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Objective

1. Reduce the domain discrepancy by aligning feature
representations of two domains without using any
target domain labels.

2. Classifier trained with source labels can be adapted
on the target data.
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I Adversarial adaptation in the feature space
degraded by the large low-level domain variances in
pixel space.

I Pixel-level adversarial adaptation exploited to
alleviate low-level domain variances.

Contribution

I Exploiting the pixel-level adversarial adaptation as
the constraint on feature-level adaptation, by
which image quality degradation issue can be
avoided while the low-level domain variance can be
alleviated.

I A new hierarchical model based on Generative
Adversarial Network for UDA, which exploits
pixel-level adversarial adaptation as guidance to
facilitate the feature-level adaptation.
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Figure 1: An overview of our proposed method.

I Overview:
min
Φ∪Ω
LHAND(Xs,Xt,Es; Et,Gs,Gt,Df,Dp) =

min
Φ
Ladv feature(Xs,Xt,Es; Et,Df)

s.t. Ω = arg minLadv pixel(Xs,Xt,Es; Et,Gs,Gt,Dp)

(1)

I Hierarchical Adversarial Adaptation:
Ladv feature = LGAN(Xs,Xt,Es; Et,Df) (2)

min
Df

LadvD(Xs,Xt,Es; Et) =

− Exs∼Xs[log(Df(Es(xs)))]

− Ext∼Xt[log(1− Df(Et(xt)))]

(3)

Ladv pixel =LLSGAN(Xs,Xt,Es; Et,Gs,Gt,Dp)

+ λLRec(Xs,Es; Gs)
(4)

min
Et,Gs,Gt

LadvE,G(Xs,Xt,Es; Dp) =

Exs∼Xs[(Dp(Gs(Es(xs)))− 1)2]

+ Ext∼Xt[(Dp(Gt(Et(xt)))− 1)2]

+ λ ‖ Xs − Gs(Es(xs)) ‖2
2

s.t. Gs = Gt

(5)
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Source Only 77.22 58.22 61.13 87.06

DDC 79.10 66.50 68.10 -

DAN - - 71.10 88.00

DANN 77.10 73.00 73.90 91.10

CORAL - - 63.10 85.20

DRCN 91.80 73.67 81.97 -

DSN w/MMD - - 72.20 88.50

DSN w/DANN - - 82.70 91.20

CoGAN 91.20 89.10 did not converge -

ADDA 89.40 90.10 76.00 -

Ours 91.89 95.98 84.89 92.51
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Ave.

1-NN-s 92.5 55.7 28.5 14.8 11.0 40.5

SVM-s 87.8 65.0 35.8 15.7 16.7 44.2

GFK-PLS 92.5 74.0 32.1 14.1 12.3 45.0

SA 97.9 85.9 47.9 16.6 13.9 52.4

CORAL 91.4 74.8 35.3 13.4 13.2 45.6

ILS 96.6 88.3 72.9 28.4 34.8 64.2

PUnDA 94.3 92.2 78.8 28.9 34.7 65.7

Ours 98.9 94.2 91.7 44.6 53.2 76.5

Accuracy (mean%) values for digital number adaptation task. Accuracy (mean%) values for multiview face recognition task.
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