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Abstract
Existing deepfake detectionmethods fail to generalize well to unseen or degraded samples, which can be attributed to the over-
fitting of low-level forgery patterns. Here we argue that high-level semantics are also indispensable recipes for generalizable
forgery detection. Recently, large pre-trained Vision Transformers (ViTs) have shown promising generalization capability. In
this paper, we propose the first parameter-efficient tuning approach for deepfake detection, namely DeepFake-Adapter, to
effectively and efficiently adapt the generalizable high-level semantics from large pre-trained ViTs to aid deepfake detection.
Given large pre-trained models but limited deepfake data, DeepFake-Adapter introduces lightweight yet dedicated dual-level
adapter modules to aViTwhile keeping themodel backbone frozen. Specifically, to guide the adaptation process to be aware of
both global and local forgery cues of deepfake data, 1)we not only insertGlobally-aware Bottleneck Adapters in parallel to
MLP layers of ViT, 2) but also actively cross-attend Locally-aware Spatial Adapterswith features fromViT. Unlike existing
deepfake detection methods merely focusing on low-level forgery patterns, the forgery detection process of our model can be
regularized by generalizable high-level semantics from a pre-trained ViT and adapted by global and local low-level forgeries
of deepfake data. Extensive experiments on several standard deepfake detection benchmarks validate the effectiveness of
our approach. Notably, DeepFake-Adapter demonstrates a convincing advantage under cross-dataset and cross-manipulation
settings.
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1 Introduction

With recent advances in deep generative models, increasing
hyper-realistic face images or videos can be readily gener-
ated,which can easily cheat human eyes. This leads to serious
misinformation and fabrication problems in politics (Shao et
al., 2023, 2024, 2022,b, 2023), entertainment and society
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once these techniques are maliciously abused. This threat is
known as DeepFake.

To address this security issue, various deepfake detection
methods have been proposed and obtain promising per-
formance when training and testing forgery data are from
identical manipulation types with good quality. Neverthe-
less, their performance degrades once countering unseen or
low-quality forgeries (Luo et al., 2021; Chai et al., 2020;
Shao et al., 2022a, 2020). This may be because most of
existing deepfake detectionmethodsmerely focus on exploit-
ing low-level forgery features from local textures (Chen et
al., 2021; Gu et al., 2022; Zhao et al., 2021; Liu et al.,
2020; Shao et al., 2019, 2018), blending boundary (Li et
al., 2020), or frequency information (Li et al., 2021; Qian
et al., 2020). These features have the following common-
ness in practice: 1) different forgeries tend to have quite
distinct low-level characteristics and thus testing data with
unseen forgery types would present quite distinct forgery
patterns compared to training data and 2) a portion of low-
level forgery patterns are likely to be altered and covered by
post-processing steps such as compression, blur and noise in
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Fig. 1 Example images and distributions of pre-trained Xception and
ViT features after linear-probe on aDeepFake and b FaceSwap splits of
FaceForensics++ dataset

low-quality data. These factors degenerate the generalization
ability of extracted forgery representations. To address these
issues, this paper explores high-level semantics to facilitate
a generalizable deepfake detection. In particular, as shown
in example images of Fig. 1, we can observe that apart
from distinct low-level patterns such as textures between real
and fake faces, some generic high-level semantics of real
faces such as face style and shape are also altered by some
facemanipulationmethods (e.g.,DeepFake and FaceSwap in
FaceForensics++ dataset (Rossler et al., 2019)). Thus, these
high-level semantics could be exploited for deepfake detec-
tion as they are robust to variation of low-level features.

Recently, Vision Transformer (ViT) (Dosovitskiy et al.,
2020) and its variants have demonstrated remarkable suc-
cess in a broad range of computer vision tasks. Various large
ViTs pre-trained on massive labeled data are able to learn
representations with rich semantics. We preliminarily verify
the efficacy of high-level semantic features of large pre-
trained ViT for deepfake detection in Fig. 1. Following the
setting of linear-probe evaluation in Radford et al. (2021),
we compare the linear separability regarding real/fake faces
of FaceForensics++ dataset (Rossler et al., 2019) based on
features extracted by Xception (Chollet, 2017) pre-trained
on ImageNet-1K (Deng et al., 2009) and ViT-Base (Dosovit-
skiy et al., 2020) pre-trained on ImageNet-21K, respectively.
As illustrated in Fig. 1, high-level semantic features from
both pre-trained Xception and ViT have the potential to
discriminate face forgeries through a simple linear-probe.
Furthermore, the separation between real/fake distributions
of ViT features are substantially larger than that of Xcep-
tion features on both manipulation types. These observations
demonstrate that 1) high-level semantic features are useful
for deepfake detection and 2) features from larger pre-trained

ViT model are more effective for deepfake detection. This
motivates us to dig the power of large pre-trained ViTs for
our task.

A straightforward way to adapt the pre-trained ViT for
deepfake detection is full fine-tuning (full-tuning) with face
forgery data. However, the performance of full-tuning would
be severely affected by two factors 1) given a large volume
of pre-trained ViT’s parameters (e.g., ViT-Base (Dosovit-
skiy et al., 2020) with 85.8M parameters) and a relatively
smaller amount of deepfake detection data, full-tuning is
very likely to result in over-fitting and thus damages the
generalization ability of ViT and 2) as proved in Kumar et
al. (2022), full-tuning could distort pre-trained features and
leads to worse performance in the presence of large distri-
bution shift. Therefore, to effectively and efficiently adapt
generalizable high-level semantics from large pre-trained
ViTs to deepfake detection, this paper proposes to explore
a fast adaptation approach, namely DeepFake-Adapter,
in a parameter-efficient tuning manner. DeepFake-Adapter
allows a small amount (16.9M, 19% of ViT-Base parameters.
Refers to Table 1) ofmodel parameters, i.e., adaptermodules,
to be trained whereas the vast majority of pre-trained param-
eters in the model backbone are kept frozen.

Notably, DeepFake-Adapter consists of dual-level mod-
ules. First, to adapt ViT with global low-level features, we
insert Globally-aware Bottleneck Adapters (GBA) in par-
allel toMultilayer Perception (MLP) layers of the pre-trained
ViT. It explores global low-level forgeries, e.g., blending
boundary (Li et al., 2020), in a bottleneck structure. Second,
to capture more local low-level forgeries in the adaption pro-
cess, e.g., local textures (Chen et al., 2021; Gu et al., 2022;
Zhao et al., 2021; Liu et al., 2020), we devise Locally-aware
Spatial Adapters (LSA) to extract local low-level features
and lead them to interact with features from the pre-trained
ViT via a series of cross-attention. In this way, the forgery
detection is regularized by generalizable high-level seman-
tics from a pre-trained ViT and adapted with global and local
low-level forgeries by the dual-level adapter. This organic
interaction between high-level semantics and global/local
low-level forgeries contributes to better generalizable forgery
representations for deepfake detection.Main contributions of
our paper are:

– We argue that high-level semantics of large pre-trained
ViTs could be beneficial for deepfake detection. To make
use of these semantics, we are the first work to introduce
the adapter technique into the field of deepfake detection,
which fast adapts a pre-trained ViT for our task.

– We propose a novelDeepFake-Adapter, which is a dual-
level adapter composed of Globally-aware Bottleneck
Adapters (GBA) and Locally-aware Spatial Adapters
(LSA). DeepFake-Adapter can effectively adapt a pre-
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Table 1 Configurations of pre-trained ViT and proposed Deepfake-Adapter

Settings of ViT (Dosovitskiy et al., 2020) Settings of GBA Settings of LSA Total Param

Blocks Width MLP Heads #Param N Width #Param N Heads #Param

12 768 3072 12 85.8M 12 64 1.19M 3 6 15.73M 102.7M

trained ViT by enabling high-level semantics from ViT
to organically interact with global and local low-level
forgeries from adapters. This contributes to more gener-
alizable forgery representations for deepfake detection.

– Extensive quantitative and qualitative experiments
demonstrate the superiority of our method for deepfake
detection. Notably, DeepFake-Adapter outperforms the
full-tuning adaptation method by only tuning less than
20% of all model parameters. We hope that our approach
can facilitate future research on generalizable deepfake
detection in the era of larger vision models.

2 RelatedWork

2.1 DeepFake Detection

Current deepfake detection methods can be mainly cat-
egorized into spatial-based and frequency-based forgery
detection. The majority of spatial-based deepfake detection
methods pay attention to capturing low-level visual cues
from the spatial domain. The blending boundary caused
by face forgery operations is detected as the visual arti-
facts for deepfake detection (Li et al., 2020). Various local
textures (Chen et al., 2021; Gu et al., 2022; Zhao et al.,
2021; Zhu et al., 2021; Liu et al., 2020) are intensively ana-
lyzed and explored to highlight the appearance differences
between real and forged faces. Besides, direct light (Zhu et
al., 2021) is disentangled by a 3D decomposition method
and fused with other features using a two-stream network
for forgery detection. Patch diffusion (Zhang et al., 2022)
and patch inconsistency (Zhao et al., 2021) are also studied
to explore the distinct correlation consistency among local
patch features between real and forgery faces. Moreover,
motion artifacts are dig out from mouth movements as the
face forgery patterns by fine-tuning a temporal network pre-
trained on lipreading (Haliassos et al., 2021). This method
targets at detecting fake videos based on mouth movements
without overfitting to low-level, manipulation-specific arte-
facts. RealForensics (Haliassos et al., 2022) is also another
work to exploit generalizable high-level temporal features by
studying the natural correspondence between the visual and
auditory modalities based on a self-supervised cross-modal
manner. In addition, noise characteristics are exploited as the
forgery clues in works (Gu et al., 2022; Zhou et al., 2017).

On the other hand, some methods focus on frequency
domain for detecting spectrum artifacts. High-frequency part
of Discrete Fourier Transform (DFT) (Durall et al., 2019;
Dzanic et al., 2020) are extracted to detect distinct spec-
trum distributions and characteristics between real and fake
images. Local frequency statistics based on Discrete Cosine
Transform (DCT) are exploited by F3-Net (Qian et al., 2020)
to mine forgery cues. Up-sampling artifacts in phase spec-
trum are explored by a Spatial-Phase Shallow Learning
method (Liu et al., 2021). To capture generalizable forgery
features, high-frequency features are integrated with regular
RGB features with a two-stream model (Luo et al., 2021).
What’smore, a frequency-aware discriminative feature learn-
ing framework is proposed to perform metric learning in
frequency features (Li et al., 2021).

Most of the above deepfake detection methods only study
low-level spatial or frequency artifacts. Instead, this paper
performs interaction between high-level semantics from a
large pre-trained ViT and dual levels of forgeries from
DeepFake-Adapter, unveiling better generalizable forgery
representations. -5mm

2.2 Parameter-Efficient Transfer Learning

Parameter-efficient tuning methods have drawn increasing
attention starting from the natural language processing (NLP)
community. Unlike most of the popular transfer learning
methods such as full-tuning and linear-probe (Zhuang et al.,
2020), parameter-efficient tuning methods only need to train
a small portion of model parameters in consideration of the
rapid increase in model size of large pre-trained language
models (Li et al., 2024; Chen et al., 2024; Shen et al., 2024;
Ye et al., 2024). Prompt learning (Liu et al., 2023; Lester
et al., 2021) is wide-used in NLP which prepends learnable
tokens into the input text. Adapter (Houlsby et al., 2019)
and LoRA (Hu et al., 2022) add tiny learnable modules into
NLP transformers. Some follow-up parameter-efficient tun-
ingworks in the computer visionfield (Jia et al., 2022;Chen et
al., 2022b, 2023a, b) have also been proposed recently. This
paper is the first work to introduce the adapter technique into
deepfake detection with a dedicated dual-level adapter.
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Fig. 2 Overall architecture of proposed model. The model consists of N stages. Each stage contains MHSA and MLP layers of pre-trained ViT,
GBA and LSA (LSA-H and LSA-I) of proposed DeepFake-Adapter

3 Our Approach

3.1 Overview

The overall architecture of the proposed network is illustrated
in Fig. 2. As depicted in the first row of Fig. 2, the whole net-
work is composed of N stages. Each stage contains one stage
of pre-trained ViT whose parameters are frozen during the
training, and one stage of deepfake-adapter with trainable
parameters for fast adaptation. Moreover, the patch embed-
ding layer of ViT is also frozen and the head part of the
proposed Locally-aware Spatial Adapter (LSA-H) is inserted
at the beginning of the network.

Specifically, we take Stage 1 as an example shown in
the second row of Fig. 2. Given a pre-trained ViT with
total L blocks (each block consists of a Multi-Head Self-
Attention (MHSA) layer and a MLP layer), we evenly
group these blocks into N stages and thus the above one
stage of ViT contains L/N blocks. The corresponding
stage of DeepFake-Adapter consists of L/N Globally-aware
Bottleneck Adapters (GBA) and one interaction part of
Locally-aware Spatial Adapter (LSA-I), which are organ-
ically interacted with ViT for adaptation. Details of each
module in the whole model are introduced in the following
sections.

3.2 Vanilla ViT

We adopt a pre-trained vanilla ViT as the frozen backbone
of our network. As mentioned above, it basically consists
of a patch embedding layer and following L blocks. Given
an input image x ∈ R3×H×W , we feed it into the patch
embedding layer of ViT. It firstly divides the image into

non-overlapping P × P patches and then flattens them into
sequential patches xp ∈RK×(P2C), where (H ,W ) is the reso-
lution of the input image;C is the number of channels; (P, P)
is the resolution of each image patch, and K = HW/P2 is
the resulted number of patches. All of these image patches
are projected to D-dimensional embedding and added with
position embedding. This produces the patch embedding of
ViT as the input of Stage 1, denoted as f 1vi t ∈ R(P2C)×D .
After that, the patch embedding passes through MHSA lay-
ers andMLP layers in every block of ViT to carry out a series
of self-attention. Specifically, MHSA in l-th block of ViT is
performed on normalized query (Q), key (K ), and value (V )
features as follows,

f (l)vi t

′ = Attention(Q =̂

f (l)vi t , K =̂

f (l)vi t , V =̂

f (l)vi t )

= Softmax(KT Q/
√
D)V

(1)

where
̂

f (l)vi t = LN( f (l)vi t ), which is the feature normalized by
the LayerNorm layer (Ba et al., 2016) as the input of MHSA

layer in l-th block. Its output f (l)vi t

′
is then fed into the follow-

ing MLP layer as follows,

f (l+1)
vi t = MLP(

̂

f (l)vi t

′
) + f (l)vi t

′ (2)

where f (l+1)
vi t is the output of l-th block of ViT.

3.3 Globally-aware Bottleneck Adapter

Considering that MHSA layers of ViT tend to extract global
features (Dosovitskiy et al., 2020), we insert Globally-aware
Bottleneck Adapter (GBA) after each MHSA layer and in
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Fig. 3 Details of GBA and LSA of proposed DeepFake-Adapter. a Head part and b Interaction part of LSA capture local low-level forgeries that
interact with features from pre-trained ViT via a series of cross-attention. c GBA adapts the pre-trained ViT with global low-level forgeries in a
bottleneck structure

parallel to MLP layers of ViT as illustrated in second row
of Fig. 2. It attempts to adapt the pre-trained ViT with more
global low-level forgery features, such as blending bound-
ary (Li et al., 2020). Specifically, inspired by (Chen et al.,
2022b; He et al., 2022), as shown in Fig. 3 (c), GBA is
devised as a bottleneck structure in purpose of saving param-
eters for fast adaptation, which consists of a down-projection
linear layer (DOWN) and an up-projection linear layer (UP).
In addition, a ReLU layer (Agarap, 2018) is incorporated
between two projection layers for non-linear transformation.
To adaptively weigh the importance of global low-level fea-
tures in the adaptation, one more learnable scale function
(SC) is added after two projection layers. The whole adapta-
tion process of GBA is as follows,

f̃ (l)vi t = SC · UP · ReLU(DOWN( f (l)vi t

′
)) (3)

where f̃ (l)vi t is the adapted global low-level features from cor-
responding GBA in l-th block of ViT, which can be further
fused with the original output of MLP layer as follows,

f (l+1)
vi t = MLP(

̂

f (l)vi t

′
) + f (l)vi t

′ + f̃ (l)vi t
(4)

3.4 Locally-aware Spatial Adapter

It is well known that ViT hasmuch less image-specific induc-
tive bias, e.g., spatial locality, than Convolutional Neural
Networks (CNNs) (Dosovitskiy et al., 2020). This makes
a ViT less likely to differentiate local low-level features
between real and fake faces. To address this issue, we intro-
duce Locally-aware Spatial Adapter (LSA) in this section,
which is composed of head and interaction parts. It aims to
adaptmore local low-level forgery features, such as local tex-
tures (Chen et al., 2021; Gu et al., 2022; Zhao et al., 2021;
Liu et al., 2020) for our task.

Head part (LSA-H). Inspired by recent works (Yuan et al.,
2021; Wu et al., 2021) that integrate convolutional opera-
tions ofCNNs into aViT,we introduce the convolution-based
head part of LSA. It locates in parallel to the patch embed-
ding layer of ViT, attempting to capture more local low-level
forgeries of input images from the beginning. To be spe-
cific, as depicted in Fig. 3 (a), following the structure of
ResNet (He et al., 2016), we employ a standard CNN as
the base network to extract base feature maps, which con-
sists of three Convolution-BatchNorm-ReLU blocks and a
max-pooling layer. Then, three similar convolutional blocks
are used to extract several intermediate feature maps. They
are composed of various pyramid resolutions, 1/r1, 1/r2, and
1/r3 resolutions, corresponding to the size of original input
images. After that, all of them are projected into the same
dimension D via three projectors and concatenated into a

feature vector denoted as f 1spa ∈ R
( HW

r21
+ HW

r22
+ HW

r23
)×D

. Based
on this, LSA-H aggregates features with diverse spatial res-
olutions, capturing fine-grained and rich local forgeries.

Interaction part (LSA-I). Given the aggregated features
f 1spa , we intend to enable the whole adaption process to suf-
ficiently be aware of local low-level forgeries captured from
these features. To this end, as illustrated in the second row
of Fig. 2, we devise the interaction part of LSA which leads
these features (e.g., f 1spa in Stage 1) to interact with features
from the beginning and end of ViT in each stage (e.g., f 1vi t
and f 2vi t in Stage 1). In greater detail, in Stage i , the first inter-
action is performed by amulti-head cross-attention (MHCA)
between feature f ispa and the feature from the beginning of

ViT f ivi t , as depicted in Fig. 3 (b). Here, we treat normalized
f ivi t as query and normalized f ispa as key and value in this
MHCA as follows,
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f ivi t
′ = f ivi t + Attention(Q = ̂f ivi t , K = ̂f ispa, V = ̂f ispa)

(5)

where f ivi t
′
is the result of the first interaction. It will be fed

back into ViT and go through the following MHSA, MLP
layers and GBA modules in ViT. This adaptation process
injects local low-level features into the forward process of
ViT. Once obtaining the feature (denoted as f i+1

vi t ) through
the whole forward process of ViT in Stage i , we perform the
second interaction at the end of ViT by conducting MHCA
between f ispa and f i+1

vi t . We switch the K , Q, V by taking

normalized f ispa as query and normalized f i+1
vi t as key and

value in this MHCA as follows,

f i+1
spa = f ispa + Attention(Q = ̂f ispa, K = ̂f i+1

vi t , V = ̂f i+1
vi t )

(6)

where f i+1
spa is the updated low-level features which will be

forwarded to interaction with new features of ViT f i+1
vi t in the

next stage. As such, the influence of local low-level features
regarding face forgery data could be further strengthened in
the adaptation process at the end of each stage.

After we extract the feature f N+1
spa through N stages of

our model, we feed it into a classifier based on a linear layer
CLS and calculate a cross-entropy loss as follows,

L = H(CLS( f N+1
spa ), y) (7)

where y are labels for corresponding samples andH(·) is the
cross-entropy function. We train all the above adapters with
this loss function L in an end-to-end manner.

In summary, through making high-level semantic features
from the pre-trained ViT interacted with global low-level
features in Eq. 4 and local low-level features in Eq. 5-6, our
model based on such dual-level adaptation could exploit bet-
ter generalizable forgery representations.

3.5 Merits and Limitations

As aforementioned, the proposed DeepFake-Adapter per-
forms fast adaption for a large pre-trained ViT via GBA and
LSA simultaneously. This dual-level adaptation contributes
to a better discriminative and generalizable deepfake detec-
tion. Furthermore, this adaptation is devised in a parameter-
efficient tuning manner. We only need to train remarkably
fewer parameters in GBA and LSA (less than 20% of the
original large pre-trained ViT). This makes our method eas-
ily scale up to various deepfake datasets and deployed with
affordable GPU machines for training.

On the other hand, we need to point out one main limita-
tion of the proposed method. Since our approach is designed
specifically to adapt a large pre-trained ViT, the detection
process is regularized by high-level semantics from it. While
its advantage facilitates a generalizable deepfake detection, it
brings a negative impact that the current model is likely to be
unavailable for detecting the forgery based on face reenact-
ment (e.g.,Face2Face andNeuralTexture inFaceForensics++
dataset). This is because these types of face manipulation
only present very minor low-level forgery patterns without
much modification on high-level semantics. We argue that it
is impractical to address all types of deepfake manipulation
in a single model. Consequently, this paper mainly focuses
on detecting one of the most popular and the highest risky
face forgery methods based on face swapping.

4 Experiments

4.1 Experimental Settings

Datasets. Experiments are conducted on several existing
public deepfake datasets, e.g., FaceForensics++ (FF++)
(Rossler et al., 2019), Celeb-DF (Li et al., 2020), Deepfake
Detection Challenge (DFDC) (Dolhansky et al., 2020), and
DeeperForensics−1.0 (DF1.0) (Jiang et al., 2020). As one
of themost widely-used datasets in deepfake detection, FF++
collects 1,000 original videos, and 4000 fake videos gener-
ated by corresponding four face manipulation techniques:
Deepfakes (DF) (Li et al., 2020), Face2Face (F2F) (Thies et
al., 2016), FaceSwap (FS) (Thies et al., 2016), and Neural-
Textures (NT) (Thies et al., 2019). In contrast, most of the
manipulation types in Celeb-DF, DFDC, and DF1.0 datasets
are based on face swapping. Considering factors mentioned
in section of Merits and Limitations and the most prevail-
ing face forgery in practice, we mainly train our model on
manipulation types of DF and FS in FF++ dataset. This eval-
uates the generalization ability of our method on forgeries
related to face swapping.Moreover, we adopt both c23 (high-
quality) and c40 (low-quality) versions of FF++ data in our
experiments, examining deepfake detection on forgeries with
various qualities.

4.2 Evaluation on Discrimination Ability

Implementation Details. We tabulate configurations of the
used pre-trained ViT and proposed DeepFake-Adapter in
Table 1. We adopt ViT-Base (Dosovitskiy et al., 2020) pre-
trained on ImageNet-21K as our frozen backbone in this
paper, which is equipped with 12 blocks. These blocks are
evenly split into 3 stages and thus there exist 4 blocks of ViT
in each stage. In each block, everyMHSA layer has 12 heads
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Table 2 Structure details of all components in LSA-H

Layer Chan./Stri Out.Size

Base

Input: image

conv0-1 64/2 112

conv0-2 64/1 112

conv0-3 64/1 112

pool0-1 -/2 56

Conv-1

Input: pool0-1

conv1-1 128/2 28

Conv-2

Input: conv1-1

conv2-1 256/2 14

Conv-3

Input: conv2-1

conv3-1 256/2 7

Proj-1

Input: conv1-1

conv4-1 768/1 28

Proj-2

Input: conv2-1

conv5-1 768/1 14

Proj-3

Input: conv3-1

conv6-1 768/1 7

and the embedding size of every MLP layer is 3072. Since
eachMLP layer of ViT is paralleled with a GBA, 12 GBA are
inserted in total, where the embedding size of bottleneck is
64.Moreover, we place one LSA in each stage of our network
and thus the total number of LSA is 3, where each MHCA
has 6 heads. In all, parameter numbers of ViT, GBA and LSA
are 85.8M, 1.19M, and 15.73M. This implies the trainable
dual-level adapter is much smaller than pre-trainedViT (only
19.72% of pre-trained ViT parameters), which statistically
validates the proposed model is parameter-efficient.

All of our experiments are performed on 4 NVIDIAV100
GPUs with PyTorch framework (Paszke et al., 2017). For the
training schedule, we employ a 10-epochs warm-up strategy.
The initial learning rate is set as 1e − 1, with a cosine learn-
ing rate decay. We use the SGD momentum optimizer with
weight decay set as 1e − 4. The batch size is set as 64.

We also provide the structure details of LSA-H (as shown
in Fig. 3 (a)) in Table 2. Specifically, each convolutional
layer in blocks of Base Network, Conv-1, Conv-2, and Conv-
3 is followed by a batch normalization layer and a ReLU
activation function.

Evaluation Metrics. We evaluate the proposed method and
other baselines using the most commonly used metrics in
related works (Cao et al., 2022; Dong et al., 2022; Chen et
al., 2022a; Li et al., 2020; Chen et al., 2021; Qian et al.,
2020; Zhao et al., 2021), including Accuracy (ACC), Area
Under the Receiver Operating Characteristic Curve (AUC),
and Equal Error Rate (EER).

In this section, to examine the discrimination ability of
the proposed method, we carry out an intra-dataset evalua-
tion where training and test data are from the same FF++
dataset. Following (Gu et al., 2022), we compare the pro-
posedmethod with a few state-of-the-art (SOTA) approaches
applied in deepfake detection. The evaluation is performed
on both c23 (high-quality) and c40 (low-quality) data ver-
sions andwe tabulate the comparison results in Table 3. From
Table 3, it can be seen that in the easier case of evaluation
on c23, some latest baselines have already achieved satu-
rated performance over 99% AUC when dealing with four
manipulation types, especially in DF and FS forgeries. In
such a case, although the proposed method (Ours) is not
able to reach 100% detection accuracy, it still obtains the
second best performance compared to other baselines. Fur-
thermore, in the harder case of c40, the proposed method
substantially outperforms other baselines by 1%-2% AUC
improvement in DF, FS and F2F respectively and obtains
comparable results inNT.These experimental results demon-
strate that the proposed method not only performs well
in detection of high-quality forgeries but also is discrim-
inative and robust in detecting low-quality forgeries filled
with blur, compression and noise. This verifies exploit-
ing high-level semantics improves the discrimination and
robustness of forgery detection in presence of various post-
processing. To further improve the discriminative ability in
intra-manipulation scenarios for all types of deepfake detec-
tion, we unfreeze the self-attention layer in the first block
of ViT for training, which only increases a small number
of trainable parameters (increase from 16.92M to 19.28M).
We denote this version of the proposed method as Ours∗ in
Table 3. It can be seen from Table 3 that two versions of
the proposed method can obtain the best or the second-best
results in all settings. Notably, Ours∗ achieves the SOTA per-
formance in 6/8 benchmarks and performs better than SIM
under NT of c40. This further indicates that the proposed
method can discriminate well all types of face manipulation
methods, especially for the harder cases in c40 of FF++.

4.3 Evaluation on Generalization Ability

Cross-Manipulation Evaluation. To evaluate the gener-
alization ability of our method on unseen forgeries, fol-
lowing RECCE (Cao et al., 2022), we first perform cross-
manipulation experiments by training and testing on different
face manipulation methods in c40 version of FF++ dataset.
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Table 3 Performance of intra-dataset evaluation. Best results are in bold. Second-best results are in underline

Methods FaceForensics++ (c23) FaceForensics++ (c40)

DF FS F2F NT DF FS F2F NT

ResNet-50 (He et al., 2016) 98.93 99.64 98.57 95.00 95.36 94.64 88.93 87.50

Xception (Chollet, 2017) 98.93 99.64 98.93 95.00 96.78 94.64 91.07 87.14

LSTM (Hochreiter & Schmidhuber, 1997) 99.64 98.21 99.29 93.93 96.43 94.29 88.21 88.21

C3D (Tran et al., 2014) 92.86 91.79 88.57 89.64 89.29 87.86 82.86 87.14

I3D (Carreira & Zisserman, 2017) 92.86 96.43 92.86 90.36 91.07 91.43 86.43 78.57

TEI (Liu et al., 2020) 97.86 97.50 97.14 94.29 95.00 94.64 91.07 90.36

DSANet (Wu et al., 2021) 99.29 99.64 99.29 95.71 96.79 95.36 93.21 91.78

V4D (Zhang et al., 2020) 99.64 99.64 99.29 96.07 97.86 95.36 93.57 92.50

FaceNetLSTM (Sohrawardi et al., 2019) 89.00 90.00 87.00 - - - - -

Co-motion (Wang et al., 2020) 99.10 98.30 93.25 90.45 - - - -

DeepRhythm (Qi et al., 2020) 98.70 97.80 98.90 - - - - -

ADD-Net (Zi et al., 2020) 92.14 92.50 83.93 78.21 90.36 80.00 78.21 69.29

S-MIL (Li et al., 2020) 98.57 99.29 99.29 95.71 96.79 94.64 91.43 88.57

S-MIL-T (Li et al., 2020) 99.64 100 9.64 94.29 97.14 96.07 91.07 86.79

STIL (Gu et al., 2021) 99.64 100 99.29 95.36 98.21 97.14 92.14 91.78

SIM (Gu et al., 2022) 100 100 99.29 6.43 99.28 97.86 95.71 4.28

Ours 99.84 99.76 99.33 95.97 9.57 9.00 7.50 91.25

Ours∗ 9.85 9.83 99.67 96.52 99.65 99.20 97.61 94.30

Bold values indicate the best results

Table 4 Cross-manipulation evaluation trained with DF and FS

Methods Train DF FS

Xception (Chollet, 2017) DF 98.44 68.67

RFM (Wang & Deng, 2021) 98.80 72.69

Add-Net (Zi et al., 2020) 98.04 68.61

Freq-SCL (Li et al., 2021) 98.91 66.87

MultiAtt (Zhao et al., 2021) 99.51 67.33

RECCE (Cao et al., 2022) 99.65 4.29

Ours 9.57 79.51

Xception (Chollet, 2017) FS 79.54 97.02

RFM (Wang & Deng, 2021) 81.34 98.26

Add-Net (Zi et al., 2020) 72.82 97.56

Freq-SCL (Li et al., 2021) 75.90 98.37

MultiAtt (Zhao et al., 2021) 82.33 98.82

RECCE (Cao et al., 2022) 2.39 8.82

Ours 88.57 99.04

Bold values indicate the best results

We compare ourmethodwith several SOTAs inTable 4. It can
be observed from Table 4 that the proposed method achieves
better generalization performance on unseen face manipu-
lation methods compared with other competitors, yielding
about 5% and 6% AUC gains in two cross-manipulation
evaluation settings. At the same time, the proposed method
remains very competitive when training and testing data are
from identical manipulation types. These results under c40
of FF++ validate that better generalizable forgery represen-

tations for deepfake detection can be captured by our method
even facing highly post-processing scenarios.

We further tabulate cross-manipulation evaluation with
respect to F2F as shown in Table 5. Our model trained with
F2F can also achieve second best average generalization per-
formance when testing on unseen manipulation types, with
very close average result to RECCE (Cao et al., 2022) and
substantially surpassing the other SOTAs. To be specific, the
other version of the proposed method (Ours∗ in Table 5) fur-
ther improves the cross-manipulation performance and can
achieve the best average generalization ability compared to
all the other SOTAs. The experimental results in Table 3 and
Table 5 demonstrate our model have great potential to deal
with all types of face manipulation methods including face
reenactment methods like F2F and NT.

Cross-DatasetEvaluation.Toverify the generalization abil-
ity of our method on unseen forgeries with larger variations,
we further conduct cross-dataset evaluations where training
and testing data are from different deepfake datasets. Firstly,
we perform a normal cross-dataset experiment, where we
train deepfake detection models with data of c40 version
on FF++, and test them on Celeb-DF and DFDC datasets,
respectively. We tabulate the obtained performance of this
experiment in Tables 6. Table 6 shows that the proposed
method exceeds all the other considered baselines by a large
margin in terms of both AUC and EER metrics. In particu-
lar, our model can reach 71.74 % and 72.66 % AUC when
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Table 5 Performance of
cross-manipulation evaluation
trained with F2F

Methods Train DF FS NT Avg

Xception (Chollet, 2017) F2F 72.93 64.26 70.48 69.22

RFM (Wang & Deng, 2021) 67.80 64.67 64.55 65.67

Add-Net (Zi et al., 2020) 70.24 59.54 69.74 66.51

Freq-SCL (Li et al., 2021) 67.55 55.35 66.66 63.19

MultiAtt (Zhao et al., 2021) 73.04 65.10 71.88 70.01

RECCE (Cao et al., 2022) 75.99 64.53 2.32 0.95

Ours 72.24 7.26 71.37 70.29

Ours∗ 3.30 67.73 72.39 71.14

Bold values indicate the best results

Table 6 Performance of
cross-dataset evaluation

Methods Train Celeb-DF DFDC

AUC ↑ EER ↓ AUC ↑ EER ↓
Xception (Chollet, 2017) FF++ 61.80 41.73 63.61 40.58

RFM (Wang & Deng, 2021) 65.63 38.54 66.01 39.05

Add-Net (Zi et al., 2020) 65.29 38.90 64.78 40.23

F3-Net (Qian et al., 2020) 61.51 42.03 64.60 39.84

MultiAtt (Zhao et al., 2021) 67.02 37.90 68.01 37.17

RECCE (Cao et al., 2022) 8.71 5.73 9.06 6.08

Ours 71.74 33.98 72.66 32.68

Bold values indicate the best results

Table 7 Cross-dataset
evaluation with single
manipulation method training

Methods DF FS Avg.

DFDC Celeb-DF DF1.0 DFDC Celeb-DF DF1.0

Xception (Chollet, 2017) 65.4 68.1 61.7 70.8 60.1 60.5 64.4

Face X-ray (Li et al., 2020) 60.9 55.4 66.8 64.6 69.7 79.5 66.1

F3-Net (Qian et al., 2020) 68.2 66.4 65.8 67.9 63.6 65.1 66.1

RFM (Wang & Deng, 2021) 75.8 72.3 71.7 71.4 59.1 71.4 70.2

SRM (Luo et al., 2021) 67.9 65.0 72.0 67.1 64.3 7.1 68.9

SLADD (Chen et al., 2022a) 7.2 3.0 4.2 4.2 80.0 69.5 4.6

Ours 77.6 84.7 91.2 75.9 3.6 81.8 80.8

Bold values indicate the best results

tested on Celeb-DF and DFDC respectively, which surpass
the SOTA method RECCE by about 3%.

To justify the generalization of the proposed method more
comprehensively, we further perform another cross-dataset
evaluation by training the model with a single type of manip-
ulationmethod (e.g.,DF and FS) in c23 of FF++ and testing it
on the unseen DFDC, Celeb-DF and DF1.0 datasets, follow-
ing the setting proposed in SLADD (Chen et al., 2022a).
We tabulate experimental results in Table 7. It is evident
from Table 7 that the proposed method achieves the best
performance regarding the cross-dataset task in most cases,
by nontrivial margins improvement in some cases such as
evaluation on DF1.0. Notably, our model is able to surpass
other compared methods by more than 6% AUC averaged
across all cases. In all, DeepFake-Adapter can obtain quite
promising performance in above two kinds of cross-dataset

evaluations. This clearly demonstrates that regularized by
generalizable high-level semantics of pre-trained ViT and
adapted with global and local low-level forgeries via dual-
level adapter, a better generalizable deepfake detection across
different datasets can be obtained by our method than other
existing deepfake detection methods.

4.4 Experimental Analysis

Comparison of Different Adaptation Methods. To high-
light the advantage of DeepFake-Adapter compared to other
existing adaptation approaches, we compare it with the
most widely-used tuning approaches, e.g., full-tuning and
linear-probe (Zhuang et al., 2020), and two latest parameter-
efficient adaptation methods named Visual Prompt Tuning
(VPT) (Jia et al., 2022) and ViT-Adapter (Chen et al., 2023b)
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Table 8 Comparison with adaptation methods

Methods Train DF FS

Full-tuning DF 9.38 74.25

Linear-probing (Zhuang et al., 2020) 91.41 67.20

VPT (Jia et al., 2022) 99.37 5.93

ViT-Adapter (Chen et al., 2023b) 99.19 73.16

Ours 99.66 76.85

Full-tuning FS 7.89 98.31

Linear-probing (Zhuang et al., 2020) 75.49 80.41

VPT (Jia et al., 2022) 86.30 97.25

ViT-Adapter (Chen et al., 2023b) 87.65 8.55

Ours 88.57 99.04

Bold values indicate the best results

in Table 8. As analyzed in Introduction, full-tuning a large
ViT with limited deepfake data will result in over-fitting
and distorting the pre-trained features. This is proved by
the experimental results in Table 8, where full-tuning all
the parameters of ViT obtains lower performance than our
method. Since tuning a small number of parameters (less
than 20% of all model parameters) can exceed tuning all
the parameters of ViT, DeepFake-Adapter is proved to be
both efficient and effective for deepfake detection. In addi-
tion, DeepFake-Adapter also substantially outperforms the
other two parameter-efficient tuning methods, linear-probe
and VPT. To achieve parameter-efficient tuning, only the
last layer of whole network is adapted and tuned in linear-
probe, while VPT simply prepends trainable tokens in the
input space. The comparison with linear-probe and VPT in
Table 8 further proves through organically interacting with
features from different intermediate layers of the pre-trained
ViT, the proposed dual-level adapter can attain more fine-
grained and more sufficient fast adaptation. Furthermore, the
proposed method also surpasses ViT-Adapter (Chen et al.,
2023b). This is because our method constructs a more com-
prehensive dual-level adaptation, introducing LSA and GBA
and thus guiding adaption process to be aware of both global
and local forgery cues.

Ablation Study. In this sub-sectionwe investigate the impact
of two key adapter modules in our DeepFake-Adapter, GBA
and LSA, to the overall performance. The considered com-
ponents and the corresponding results obtained for each case
are tabulated in Table 9. As evident from Table 9, removing
either GBA or LSA will degrade the overall performance.
This validates that both global low-level features exploited by
GBA and local low-level features extracted by LSA promote
the discrimination and generalization of deepfake detection.
These two modules complement each other to produce over-
all better performance. In addition, removing both of two
adapter modules is equal to linear-prob of pre-trained ViT. It
can be observed from Table 9 that adding either GBA or LSA

Table 9 Ablation study of Deepfake-Adapter

Modules Train DF FS

GBA LSA

� � DF 91.41 67.20

� � 99.19 73.16

� � 99.33 75.03

� � 99.57 79.51

� � FS 75.49 80.41

� � 87.65 98.55

� � 84.90 98.99

� � 88.57 99.04

Bold values indicate the best results

Table 10 Comparison of different pre-trained weights

Methods Pre-train Train DF FS

Ours MAE (He et al., 2022) DF 99.52 73.12

Supervised 99.57 79.51

Ours MAE (He et al., 2022) FS 83.97 98.88

Supervised 88.57 99.04

Bold values indicate the best results

will dramatically boost performance than linear-prob, justi-
fying that anyoneof the proposed adapters is apparentlymore
effective than linear-prob in terms of fast adaptation for deep-
fake detection. In other words, two dedicated adapters are
critical and necessary to enable the whole model to achieve
superior performance.

Comparison of Different Pre-training Weights. This sec-
tion studies the effect of different pre-trainingweights for our
model. We tabulate comparison results with MAE (He et al.,
2022) pre-trained weights in Table 10. Table 10 shows our
backbonewith supervised pre-trainingweights improves per-
formance compared to self-supervised pre-training weights
by MAE (He et al., 2022). These results indicate supervised
pre-training can provide better high-level semantics for deep-
fake detection and thusmore suitable for adaptation. Besides,
this experiment suggests our method can attain performance
benefits by freely selecting the most suitable pre-training
manner without additional training cost.

Comparison of Numbers of Trainable Parameters and
Inference Time. We further compare the number of train-
able parameters and inference time of our method with
some representative baselines in Table 11. The measure-
ment of inference time is performed based on GPU: Tesla
V100-PCIE-32GB with 32GB space, and CPU: Intel(R)
Xeon(R) Gold 6278C CPU@ 2.60GHz. Comparison results
in Tables 3–7 and Table 12 have demonstrated our method
outperforms these baselines. Table 11 here further indicates
such better performance of our method is achieved by using

123



International Journal of Computer Vision

Table 11 Comparison of
numbers of trainable parameters
and inference time

Methods #Param Inference Time

MultiAtt (Zhao et al., 2021) 417.52 M 22.81 ms

SRM (Luo et al., 2021) 53.36 M 11.25 ms

Xception (Chollet, 2017) 20.81 M 4.46 ms

LipForensics (Haliassos et al., 2021) 35.99 M 12.63 ms

RealForensics (Haliassos et al., 2022) 25.34 M 16.53 ms

Ours 16.92 M 0.88 ms

Ours∗ 9.28 M 0.88 ms

Bold values indicate the best results

Table 12 Robustness to low-level corruptions

Method Saturation Contrast Block Noise Blur Pixel Compress Avg

Xception (Chollet, 2017) 99.3 98.6 99.7 53.8 60.2 74.2 62.1 78.3

CNN-aug (Wang et al., 2020) 99.3 9.1 95.2 54.7 76.5 91.2 72.5 84.1

Patch-based (Chai et al., 2020) 84.3 74.2 9.2 50.0 54.4 56.7 53.4 67.5

Face X-ray (Li et al., 2020) 97.6 88.5 99.1 49.8 63.8 88.6 55.2 77.5

CNN-GRU (Sabir et al., 2019) 99.0 98.8 97.9 47.9 71.5 86.5 74.5 82.3

LipForensics (Haliassos et al., 2021) 99.9 99.6 87.4 73.8 96.1 95.6 95.6 92.5

RealForensics (Haliassos et al., 2022) 9.8 99.6 98.9 79.7 95.3 98.4 97.6 5.6

Ours 97.6 97.2 97.4 6.0 96.9 95.8 7.6 95.5

Ours∗ 97.9 97.5 98.0 86.3 6.8 6.2 98.0 95.8

Bold values indicate the best results

significantly fewer trainable parameters and less inference
time (only slightly more than Xception), implying the effi-
cacy and efficiency of the proposed DeepFake-Adapter.

Robustness to low-level corruptions.We follow (Haliassos
et al., 2021) to assess robustness to various unseen low-
level perturbations. Specifically, following (Haliassos et al.,
2021), we compare the proposed method with other SOTA
deepfake detection methods trained on FF++ c23 dataset on
sevenunseen low-level perturbations, such as saturation, con-
trast, block, noise, blur, pixel, and compress, as illustrated in
Table 12. It can be seen that the proposed method (Ours
and Ours∗) can achieve the best and the second-best perfor-
mance under most of the low-level perturbations, and Ours∗
attains the best average performance compared to all the other
baselines. This further implies that DeepFake-Adapter aided
by high-level semantic understanding capability from large
visionmodels ismore robust to unseen low-level corruptions.

Detection of deepfake samples generated by diffusion
modes. We further test our model on deepfake samples
generated by 5 representative diffusion modes, such as
DDPM (Ho et al., 2020a), IDDPM (Quinn & Dhariwal,
2021), ADM (Dhariwal & Nichol, 2021a), PNDM (Liu et
al., 2022), and LDM (Rombach et al., 2022). Specifically,
our model and Xception (Chollet, 2017) are trained on the
FF++ c40 dataset and evaluated under the setting of (Ricker
et al., 2024). Note that both our model and Xception are
evaluated in a zero-shot testing setup. We conducted test-

ing using the officially provided evaluation scripts. The PD
metric refers to the probability of detection at a fixed false
alarm rate, which is defined as the true positive rate at a spe-
cific false alarm rate. PD@10% indicates the probability of
our model detecting fake images while allowing a 10% false
alarm rate, a higher value is desirable. The same applies to
PD@5% and PD@1%.

We tabulate the comparison between ourmodel andXcep-
tion (Chollet, 2017) in Table 13. It can be seen that the
proposed model outperforms the baseline method in detect-
ing deepfake samples generated by all the 5 representative
diffusion modes, under all evaluation settings. This suggests
the proposed method can be applied and generalized well to
more realistic deepfake images generated by diffusion mod-
els.

Comparison of Different ViT Architectures. This section
studies the proposed DeepFake-Adapter with various ViT
architectures, in the cross-manipulation evaluation setting
same as in Section 4.3. Particularly, we tabulate the cross-
manipulation performance of DeepFake-Adapter based on
ViT-Base and ViT-Large architectures in Table 14. It shows
that DeepFake-Adapter based on various ViT architectures
can obtain the best or second-best performance compared
to the SOTA method RECCE in both intra- and cross-
manipulation settings. This suggests the proposedDeepFake-
Adapter with various ViT architectures can simultaneously
yield promising performance. Meanwhile, the t-SNE plots of
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Table 13 Performance of detection of deepfake samples generated by various diffusion modes

DM Methods AP AUROC PD@10% PD@5% PD@1%

DDPM (Ho et al., 2020b) Xception (Chollet, 2017) 51.4 50.9 11.9 6.0 1.1

Ours 59.9 61.9 18.4 10.6 2.6

IDDPM (Quinn & Dhariwal, 2021) Xception (Chollet, 2017) 52.8 52.4 13.7 6.6 1.2

Ours 61.8 64.2 20.3 11.5 2.8

ADM (Dhariwal & Nichol, 2021b) Xception (Chollet, 2017) 47.9 47.7 8.3 3.7 0.5

Ours 54.5 56.9 13.2 6.6 1.1

PNDM (Liu et al., 2022) Xception (Chollet, 2017) 48.7 46.8 10.6 5.4 1.1

Ours 53.4 54.8 12.7 6.8 1.3

LDM (Robin et al., 2022) Xception (Chollet, 2017) 49.8 49.3 10.4 5.1 1.0

Ours 57.5 59.4 16.3 8.9 1.8

Bold values indicate the best results

Table 14 Performance of cross-manipulation evaluation based on var-
ious ViT architectures

Methods Train DF FS

RECCE (Cao et al., 2022) DF 99.65 74.29

Ours (ViT-Base) 99.57 79.51

Ours (ViT-Large) 9.62 8.60

RECCE (Cao et al., 2022) FS 82.39 98.82

Ours (ViT-Base) 88.57 9.04

Ours (ViT-Large) 5.08 99.10

Bold values indicate the best results

different ViT architectures’ features are displayed in Fig. 7.
All these qualitative and quantitative results validate that the
proposed DeepFake-Adapter can be compatible with various
ViT architectures for the task of deepfake detection.

Comparison between Different Numbers of Stages and
Blocks. This section studies the choice regarding the number
of Stages and Blocks. As mentioned above, the proposed
DeepFake-Adapter splits the pre-trained ViT into 3 Stages
with 4 Blocks in each Stage. This choice is determined by
the consideration of both effectiveness and efficiency. The
core claimof the proposedDeepFake-Adapter is a parameter-
efficient tuning approach for deepfake detection. As shown
in Table 1, LSA possesses much more trainable parameters
than GBA. Therefore, employing LSA on every block will
significantly increase the trainable parameters and thus make
the proposedmethod less parameter-efficient. For this reason,
we introduce the concept of Stage and deploy only one LSA
in each Stage, which saves many trainable parameters. This
is proved by the fact that DeepFake-Adapter outperforms the
full-tuning adaptation method by only tuning less than 20%
of all model parameters. On the other hand, decreasing the
number of GBA and LSAwould also affect the performance.

To validate the efficacy of this choice, we tabulate the
comparison between different number of Stages and Blocks
in Table 15. It follows the setting of cross-manipulation eval-

Table 15 Comparison between different numbers of Stages and Blocks
in each Stage

#Stages and Blocks #Param DF FS

2 Stages with 6 Blocks 12.19 M 99.34 75.44

6 Stages with 2 Blocks 31.11 M 9.53 8.69

3 Stages with 4 Blocks 16.56 M 99.57 79.51

Bold values indicate the best results
Training data is DF of FF++ dataset and testing data is DF and FS of
FF++ dataset

Fig. 4 Comparison ofGrad-CAMvisualizations betweenXception and
the proposed model in cross-manipulation evaluation. (Best viewed in
color)

uation in Sec. 4.3. As illustrated in Table 15, the setting of
6 Stages with 2 Blocks dramatically increases the number
of trainable parameters but still achieves less effective per-
formance. Meanwhile, the setting of 2 Stages with 6 Blocks
yields fewer trainable parameters at the cost of degraded per-
formance. In contrast, the setting (3 Stages with 4 Blocks)
adopted by DeepFake-Adapter can simultaneously achieve
moderate number of trainable parameters and best perfor-
mance. This indicates the more optimal choice regarding the
number of Stages and Blocks by the proposed method.
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Fig. 5 Comparison of Grad-CAM visualizations between Xception and the proposed model in cross-dataset evaluation among DFDC, Celeb-DF
and DF1.0 datasets. (Best viewed in color)

4.5 Visualization

Attention map compared with Xception. To provide a
deeper understanding about the decision-making mecha-
nism of our method, we compare Grad-CAM (Selvaraju
et al., 2017) visualizations between our model and Xcep-
tion (Chollet, 2017) onFF++ as shown inFig. 4. Some critical
observations can be derived from Fig. 4 that 1) Xception
sometimes pays attention to semantically irrelevant regions
for real/fake classification such as background, especially
when it is trained with DF and tested on unseenmanipulation
FS. In contrast, in both intra and cross-manipulation evalu-
ations, our model is more likely to focus on facial regions
or facial contours. Since face swapping is bound to leave
some manipulation traces in local textures of facial regions
or blending boundaries around facial contours, these visu-
alizations demonstrate that our model is able to locate such
generic regions to exploit generalizable forgery patterns and
2) our model can generate more fine-grained and adaptive
attention heatmaps than Xception. This indicates more suf-
ficient discrimination cues can be captured by the proposed
method.

We further show more samples in the cross-dataset sce-
nario as illustrated in Fig. 5. As illustrated in Fig. 5, Xception
usually pays attention to background or random large regions
irrelevant for face forgery detection, while the proposed
model adaptively detects more fine-grained forgery patterns
in the facial regions. These visualizations further demon-
strate the generalization ability of our model for deepfake
detection.

Attention map regarding GBA and LSA. To facilitate
the understanding about the function of GBA and LSA, we
integrate the pre-trainedViTonlywithGBAorLSAandvisu-
alize Grad-CAM (Selvaraju et al., 2017) of the two cases in
Fig. 6, respectively. It can be observed from Fig. 6 that 1)ViT
adapted by GBA tends to focus on facial contours to exploit

Fig. 6 Comparison of Grad-CAM visualizations between ViT back-
bone with GBA and LSA. (Best viewed in color)

Fig. 7 t-SNE visualization of features encoded by a Xception b
DeepFake-Adapter (ViT-Base) and c DeepFake-Adapter (ViT-Large)
in intra and cross-manipulation settings. (Best viewed in color)

global low-level features related to the blending boundary,
while 2)ViT adapted with LSA pays attention to some facial
regions to adaptively capture local low-level features about
textures. This means the adaption by GBA and LSA could
complement each other and the combination of them would
contribute to a more sufficient and comprehensive adaption.

Feature Distribution. We apply t-SNE (Van der & Hinton,
2008) to visualize feature embeddings under the cross-
manipulation setting, as illustrated in Fig. 7. Plots in solid-
lined boxes, such as plots in the first row of Fig. 7, visualize
features of testing samples from seenmanipulations encoded
by Xception and DeepFake-Adapter (based on ViT-Base
and ViT-Large architectures), respectively. Meanwhile, plots
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in dotted-lined boxes, such as plots in the second row of
Fig. 7, visualize features of testing samples from unseen
manipulations encoded by Xception and DeepFake-Adapter,
respectively.

As illustrated in the first row of Fig. 7, when training and
testing manipulation types are identical, both Xception and
our model can attain clear classification boundary with two
separated class clusters. However, the second row of Fig. 7
shows that feature embeddings of Xception become heavily
overlapped between real/fake samples once facing unseen
manipulations, while our method can remain much clearer
clusters with smaller overlaps. This demonstrates that our
model can learn superior generalizable representations for
deepfake detection.

Furthermore, it can be seen from (b) and (c) of Fig. 7
that our model based on both ViT-Base and ViT-Large archi-
tectures can achieve clear classification boundaries with
two separated class clusters. This demonstrates the pro-
posed DeepFake-Adapter can be compatible with various
ViT architectures for the task of deepfake detection.

5 Conclusion

This paper studies high-level semantics for deepfake detec-
tion and first introduces the adapter approach to efficiently
tune large pre-trained ViT to our task. A powerful DeepFake-
Adapter is devised with GBA and LSA, which effectively
and efficiently leads high-level semantics of ViT to inter-
act with global and local low-level features in a dual-level
fashion. Various quantitative and qualitative experiments
demonstrate the effectiveness of our model for deepfake
detection. Valuable observations pave the way for future
research on generalizable deepfake detection in the era of
large vision models.

Potential Negative Impact. Although some face forgery
data is used, this work is designed to help people better fight
against the abuse of deepfake technology. Through our study
and releasing our code, we hope to draw greater attention
towards generalizable deepfake detection.
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