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Abstract
Since photorealistic faces can be readily generated by facial manipulation technologies nowadays, potential malicious abuse
of these technologies has drawn great concerns. Numerous deepfake detection methods are thus proposed. However, existing
methods only focus on detecting one-step facial manipulation. As the emergence of easy-accessible facial editing applications,
people can easily manipulate facial components using multi-step operations in a sequential manner. This new threat requires
us to detect a sequence of facial manipulations, which is vital for both detecting deepfake media and recovering original faces
afterwards. Motivated by this observation, we emphasize the need and propose a novel research problem called Detecting
Sequential DeepFake Manipulation (Seq-DeepFake). Unlike the existing deepfake detection task only demanding a binary
label prediction, detecting Seq-DeepFakemanipulation requires correctly predicting a sequential vector of facial manipulation
operations. To support a large-scale investigation, we construct the first Seq-DeepFake dataset, where face images are manipu-
lated sequentially with corresponding annotations of sequential facial manipulation vectors. Based on this new dataset, we cast
detecting Seq-DeepFake manipulation as a specific image-to-sequence (e.g., image captioning) task and propose a concise yet
effective Seq-DeepFake Transformer (SeqFakeFormer). To better reflect real-world deepfake data distributions, we further
apply various perturbations on the original Seq-DeepFake dataset and construct the more challenging Sequential DeepFake
dataset with perturbations (Seq-DeepFake-P). To exploit deeper correlation between images and sequences when facing
Seq-DeepFake-P, a dedicated Seq-DeepFake Transformer with Image-Sequence Reasoning (SeqFakeFormer++) is devised,
which builds stronger correspondence between image-sequence pairs for more robust Seq-DeepFake detection. Moreover,
we build a comprehensive benchmark and set up rigorous evaluation protocols and metrics for this new research problem.
Extensive quantitative and qualitative experiments demonstrate the effectiveness of SeqFakeFormer and SeqFakeFormer++.
Several valuable observations are also revealed to facilitate future research in broader deepfake detection problems. The code
has been released at https://github.com/rshaojimmy/SeqDeepFake/.
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1 Introduction

In recent years, hyper-realistic face images can be gener-
ated by deep generative models (Li et al., 2024; Chen et al.,
2024; Shen et al., 2024) which are visually extremely indis-
tinguishable from real images. Meanwhile, the significant
improvement for image synthesis brings security concerns
on potential malicious abuse of these techniques that produce
misinformation and fabrication, which is known as deep-
fake (Shao et al., 2025, 2023, 2024). To address this security
issue, various deepfake detection methods have been pro-
posed to detect such forged faces. As illustrated in Fig. 1a,
given the manipulated face image generated by face swap
algorithm (Rossler et al., 2019) and the original face image,
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the existing deepfake detection task requires the model to
predict the correct binary labels (Real/Fake).

With the increasing popularity of easy-accessible facial
editing applications, such asYouCamMakeup,1 FaceTune2,2

and YouCam Perfect,3 it is convenient for people to edit
face images in daily life. Compared to existing deepfake
techniques mainly carrying out one-step facial manipula-
tion (Rossler et al., 2019; He et al., 2021), we can now
easily manipulate face images using multi-step operations
in a sequential manner. As shown in Fig. 1b, the original
image can be manipulated by adding eyeglasses, making a
bigger smile and removing beard sequentially. This expands
the scope of existing deepfake problem by adding sequential
manipulation information and poses a new challenge for cur-
rent one-step deepfake detection methods. This observation
motivates us to introduce anew researchproblem—Detecting
Sequential DeepFake Manipulation (Seq-DeepFake). We
summarize several key differences between detecting Seq-
DeepFake and the existing deepfake detection: (1) rather
than only predicting binary labels (Real/Fake), detecting
Seq-DeepFake aims to detect sequences of facial manipula-
tions with diverse sequence lengths. For example, the model
is required to predict a 3-length sequence as ‘Eyeglasses-
Smiling-Beard’ for the manipulated image as shown in
Fig. 1b and (2) As illustrated in Fig. 1b, beyond pure forgery
detection, we can further recover the original faces (refer to
Sect. 7.6 in Experiments) based on the detected sequences of
facial manipulation in Seq-DeepFake. This greatly enriches
the benefits of detecting Seq-DeepFake manipulation.

To facilitate the study of detecting Seq-DeepFake, this
paper contributes the first Seq-DeepFake dataset. Figure 2
shows some samples in Seq-DeepFake dataset. From Fig. 2,
it can be seen that one face image can be sequentially manip-
ulated with different number of steps (from minimum 1 step
to maximum 5 steps), which leads to facial manipulation
sequences with diverse lengths. It is extremely difficult to
distinguish the original and manipulated face images, and
even harder to figure out the exact manipulation sequences.
To make our study more comprehensive, we consider two
different facial manipulation techniques, i.e., facial compo-
nents manipulation (Kim et al., 2021) and facial attributes
manipulation (Jiang et al., 2021), which are displayed in the
first and second row, respectively in Fig. 2.

Most of current facial manipulation applications are built
based on Generative Adversarial Network (GAN). It is well
known that the semantic latent space learned by GAN is

1 https://apps.apple.com/us/app/youcam-makeup-selfie-editor/
id863844475.
2 https://apps.apple.com/us/app/facetune2-editor-by-lightricks/
id1149994032.
3 https://apps.apple.com/us/app/youcam-perfect-photo-editor/
id768469908.

difficult to be perfectly disentangled (Shen et al., 2020a;
Lee et al., 2020b). We argue that this defect is likely
to leave some spatial as well as sequential manipulation
traces unveiling sequential facial manipulations. Based on
this observation, to detect such two types of manipula-
tions traces, we cast detecting Seq-DeepFake as a specific
image-to-sequence (e.g., image captioning) task and thus
propose a concise yet effective Seq-DeepFake Transformer
(SeqFakeFormer). Two key components are devised in
SeqFakeFormer: Spatial Relation Extraction via Image
Encoder and Sequential Relation Modeling with Spa-
tially Enhanced Cross-Attention via Sequence Decoder.
Given a manipulated image, to adaptively capture sub-
tle spatial manipulation regions, SeqFakeFormer feeds the
image into a deep convolutional neural network (CNN)
to learn its feature maps. Then we extract the relation of
spatial manipulations captured in feature maps using the
self-attention modules of Image Encoder, obtaining fea-
tures of spatial relation, i.e., spatial manipulation traces.
After that, Sequence Decoder of SeqFakeFormer models
the sequential relation of extracted spatial relation features
via cross-attention modules in an autoregressive mechanism.
This captures sequential manipulation traces, and thereby
detects the facial manipulation sequences. To enable more
effective cross-attention given limited annotations of facial
manipulation sequences, SeqFakeFormer further integrates
a Spatially Enhanced Cross-Attention (SECA) module in
the decoder. This module enriches the spatial information
of manipulation sequences by learning a spatial weight map.
After fusing the spatial weight map with the cross-attention
map, a spatially enhanced cross-attention can be achieved.

To better imitate deepfake data distributions in real-
world scenarios, we further apply 6 types of perturba-
tions, such as color distortion, multiplicative noise, random
compression and blur, to the original Seq-DeepFake data
at 3 intensity levels. This constructs a more challenging
version of Seq-DeepFake dataset with perturbations (Seq-
DeepFake-P). To deal with such a more difficult case,
we further propose a more dedicated model dubbed Seq-
DeepFake Transformer with Image-Sequence Reasoning
(SeqFakeFormer++). Apart from the extraction of image-
sequence correlation via cross-attention in SeqFakeFormer,
SeqFakeFormer++ further performs deeper correlation rea-
soning between images and sequences via Image-Sequence
Contrastive Learning (ISC) and Image-Sequence Match-
ing (ISM). The former reasoning module aligns the features
of spatial relation and features of sequential relation by
pulling those of matched image-sequence pairs close while
pushing those of unmatched pairs apart.Meanwhile, the latter
one achieves more fine-grained feature alignment between
images and sequences by predicting whether an image-
sequence pair is matched or unmatched based on aggregated
multi-modal features. Aided by these two reasoning mod-
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Fig. 1 Comparison between a
existing deepfake detection and
b proposed detecting and
recovering sequential deepfake
manipulation

Fig. 2 Illustration of sequential facial manipulation. Two types of
facial manipulation approaches are considered, i.e., facial components
manipulation (Kim et al., 2021) in the first row and facial attributes
manipulation (Jiang et al., 2021) in the second row

ules, more robust cross-modal correlation between images
and sequences could be built and thus SeqFakeFormer++
is more able to unveil sequence manipulation traces under
severe post-processing perturbations.

Main contributions of our paper can be summarized as:

– We introduce a new research problem named Detecting
Sequential DeepFake Manipulation (Seq-DeepFake),
with the objective of detecting sequences of facial manip-
ulations, which expands the scope and poses a new
challenge for deepfake detection.

– We contribute the first large-scale Seq-DeepFake dataset
generating sequential manipulated face images using two
different facial manipulation techniques. Correspond-
ing annotations of manipulation sequences are provided.
To mimic various noisy scenarios in real-world, we
further apply a series of perturbations on manipulated
face images and construct the more challenging Seq-
DeepFake dataset with perturbations (Seq-DeepFake-
P).

– We propose a powerful Seq-DeepFake Transformer
(SeqFakeFormer). Aiming at better detecting sequence
of deepfake manipulation under perturbations, a Seq-
DeepFake Transformer with Image-Sequence Reason-
ing (SeqFakeFormer++) is devised, providing deeper
cross-modal reasoning for more robust detection under

perturbations. A comprehensive benchmark is built and
rigorous evaluation protocols and metrics are designed
for this novel research problem. Extensive quantitative
and qualitative experiments demonstrate the superiority
of SeqFakeFormer and SeqFakeFormer++.

This paper is a substantial extensionof our previousECCV
2022 work (Shao et al., 2022). We have made three major
improvements in this journal version: (1) We construct a
more realistic and challenging Seq-DeepFake dataset with
perturbations (Seq-DeepFake-P). It is designed to evaluate
the robustness of Seq-DeepFake detection to various pertur-
bations in real-world; (2) To promote such robustness, amore
powerful Seq-DeepFake Transformer with Image-Sequence
Reasoning (SeqFakeFormer++) is developed. Two more
reasoning modules, Image-Sequence Contrastive Learning
via Sequence Encoder and Image-Sequence Matching via
Image-attended Sequence Encoder, are integrated and com-
plemented alongwithSequenceDecoder; (3)More visualiza-
tions corresponding to Seq-DeepFake and Seq-DeepFake-P
datasets are provided. More detailed and comprehensive
quantitative and qualitative experiments regarding SeqFake-
Former and SeqFakeFormer++ are performed in this journal
version.

2 RelatedWork

2.1 DeepFake Detection

The issue of facial information security (Shao et al., 2018,
2019, 2020, 2022b, 2020, 2017, 2022a) is receiving increas-
ing attention. Current deepfake detection methodscan be
roughly categorized into spatial-based and frequency-based
deepfake detection. The majority of spatial-based deepfake
detectionmethods focus on capturing visual cues fromspatial
domain. Face X-ray (Li et al., 2020a) is proposed to detect
the blending boundary left in the face forgery process as
visual cues for real/fake detection. A multi-attentional deep-
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fake detection network is proposed in Zhao et al. (2021a) to
integrate low-level textural features and high-level seman-
tic features. Zhu et al. (2021) introduce 3D decomposition
into forgery detection and propose a two-stream network
to fuse decomposed features for detection. Pair-wise self-
consistency learning (PCL) (Zhao et al., 2021) is introduced
to detect inconsistency of source features within the manip-
ulated images. Inconsistencies in semantically high-level
mouth movements are captured in Haliassos et al. (2021) by
fine-tuning a temporal network pretrained on lipreading. On
the other hand, some methods pay attention to the frequency
domain for detecting spectrum artifacts. There exist distinct
spectrum distributions and characteristics between real and
fake images in the high-frequency part of Discrete Fourier
Transform (DFT) (Durall et al., 2019; Dzanic et al., 2020).
Qian et al. (2020) propose a F3-Net to learn local frequency
statistics based onDiscrete Cosine Transform (DCT) tomine
forgery. Liu et al. (2021) present a Spatial-Phase Shallow
Learning method to fuse spatial image and phase spectrum
for the up-sampling artifacts detection. A two-stream model
is devised in Luo et al. (2021) to model the correlation
between extracted high-frequency features and regular RGB
features to learn generalizable features. A frequency-aware
discriminative feature learning framework (Li et al., 2021b)
is introduced to integrate metric learning and adaptive fre-
quency features learning for face forgery detection.

So far, several deepfake datasets have been released to
public, such as FaceForensics++ (Rossler et al., 2019),
Celeb-DF (Li et al., 2020b), DeepFake Detection Challenge
(DFDC) (Dolhansky et al., 2019), and DeeperForensics−1.0
(DF1.0) (Jiang et al., 2020). However, only binary labels
are provided in most of existing deepfake datasets, and thus
most of the above works are trained to carry out binary clas-
sification, which results in performance saturation and poor
generalization.

2.2 Facial Editing

Several methods have been proposed for editing facial com-
ponents (i.e. eye, nose, month). Lee et al. (2020a) present
a geometry-oriented face manipulation network MaskGAN
for diverse and interactive face manipulation guided by
semantic masks annotations. A semantic region-adaptive
normalization (SEAN) (Zhu et al., 2020) is proposed to facil-
itate manipulating face images by encoding images into the
per-region style codes conditioned on segmentation masks.
StyleMapGAN (Kim et al., 2021) introduces explicit spa-
tial dimensions to the latent space and manipulates facial
components by blending the latent spaces between refer-
ence and original faces. Moreover, some works target editing
specific facial attributes such as age progression (Yang et
al., 2018), and smile generation (Wang et al., 2018). Some
recent works discover semantically meaningful directions in

the latent space of a pretrained GAN so as to carry out facial
attributes editing bymoving the latent code along these direc-
tions (Shen et al., 2020a, b; Zhuang et al., 2021; Voynov &
Babenko, 2020; Shen & Zhou, 2021). InterFaceGAN (Shen
et al., 2020a, b) tries to disentangle attribute representations
in the latent space of GANs by searching a hyperplane, of
which a normal vector is used as the editing direction. Fine-
grained facial attributes editing is achieved by Jiang et al.
(2021) through searching a curving trajectory with respect to
attribute landscapes in the latent space of GANs.

3 Sequential DeepFake Dataset

To support the novel research problem, we generate a
large-scale Sequential DeepFake (Seq-DeepFake) dataset
consisting of sequential manipulated face images based on
two representative facial manipulation techniques, facial
components manipulation (Kim et al., 2021) and facial
attributes manipulation (Jiang et al., 2021). Unlike most of
existing deepfake datasets (Rossler et al., 2019; He et al.,
2021) only providing binary labels, the proposed dataset con-
tains annotations of manipulation sequences with diverse
sequence lengths. Details of generation pipelines based on
the two facial manipulation techniques are as follows.

3.1 Sequential Facial Components Manipulation

We adopt the StyleMapGAN proposed in Kim et al. (2021)
for facial components manipulation. Facial components
manipulation is carried out based on original images from
CelebA-HQ (Liu et al., 2015; Karras et al., 2018) and
corresponding facial component masks from CelebAMask-
HQ (Lee et al., 2020a) dataset. Facial components manipula-
tion aims to transplant some facial components of a reference
image to an original image with respect to a mask that indi-
cates the components to be manipulated. Specifically, we
project the original image and the reference image through
the encoder of StyleMapGAN to obtain stylemaps, which are
intermediate latent spaces with spatial dimensions. Then, the
facial componentsmanipulation is carried out byblending the
stylemaps extracted from reference and original faces based
on facial component masks. Due to the inevitable appearance
of degraded images in the generation process, we adopt the
Generated ImageQualityAssessment (GIQA) algorithm (Gu
et al., 2020) to quantitatively evaluate the quality of each gen-
erated image and then filter out some low-quality ones based
on the pre-defined threshold. Figure 3a shows some samples
with corresponding annotations of sequential facial compo-
nents manipulation. Through this data generation pipeline,
we can finally generate 35,166 manipulated face images
annotated with 28 types of manipulation sequences in dif-
ferent lengths (including original). As illustrated in Fig. 3a,
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Fig. 3 Illustration of Seq-DeepFake dataset. Samples of Seq-DeepFake are provided with annotations of manipulation sequences. We also show
the distribution of sequence length in Seq-DeepFake dataset

Fig. 4 More samples of Seq-DeepFake dataset. Various sequential
facial manipulations are produced with diverse manipulation steps,
expressions, ages, and genders

the proportions of 1–5 different lengths of manipulation
sequences are: 20.48%, 20.06%, 18.62%, 20.88%, 19.96%.

3.2 Sequential Facial Attributes Manipulation

Unlike facial components manipulation methods that swap
certain local parts from a reference image to an original
image,

facial attributes manipulation approaches directly change
specific attributes on the original face image without any
reference images. To take this manipulation type into con-
sideration, we utilize the fine-grained facial editing method
proposed by Jiang et al. (2021). This method aims to learn a
location-specific semantic field for each editing type on the
training set, then edit this attribute of interest on the given
face image to a user-defined degree by stepping forward or
backward on the learned curve in latent space. Based on this
idea, we further generate face images with sequential facial
attributes manipulation by performing the editing process
in a sequential manner. Specifically, we first sample latent
codes from the StyleGAN trained on FFHQ dataset (Karras
et al., 2019) to generate original images. Then according to
pre-defined attribute sequences,we progressivelymanipulate
each attribute on the original face to another randomly cho-
sen degree using the abovemethod. After generating the final
manipulation results, we also performGIQA algorithm to fil-
ter out low-quality samples. Using this pipeline, we generate
49,920 face images with 26 manipulation sequence types,
with the length of each sequence ranging from 1 to 5. Since
this generation pipeline is more controllable than facial com-
ponents manipulation, we construct a more balanced dataset,
as shown inFig. 3b.More samples generatedby the above two
types of manipulation approaches in Seq-DeepFake dataset
are displayed in Fig. 4. It can be seen from Figs. 3 and 4 that
various sequential facial manipulations are produced with
diverse manipulation steps, expressions, ages, and genders.
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Fig. 5 Illustration ofmixing process of perturbations in Seq-DeepFake-
P dataset. Different perturbation types and intensity levels are marked
in different colors. Arrows represent the mixture order, e.g., the image
on the top-middle is first added Color Contrast Change then followed
by Gaussian Blur (Color figure online)

4 Sequential DeepFake Dataset with
Perturbations

In real-world scenarios, face images are likely to be
affected by various post-processing like compression and
noise. These post-processing operations degrade the visual
quality of face images and tend to cover or alter the manip-
ulation traces. This brings greater challenges for detecting
Seq-DeepFake. To better reflect real-world deepfake data
distributions under this more realistic scenario, we fur-
ther impose a series of perturbations on the original Seq-
DeepFake dataset and construct a more challenging Sequen-
tial DeepFake dataset with perturbations (Seq-DeepFake-P).

We depict some samples of Seq-DeepFake-P dataset in
Fig. 5. Total 6 types of manipulations, e.g., JEPG Compres-
sion,White Gaussian Noise, Gaussian Blur, Color Saturation
Change, Color Contrast Change, and Local Block-Wise Dis-
tortion, are applied on all the original Seq-DeepFake images.
In particular, JEPG Compression mimics the information
loss of images in capture and storage in the real life. White
Gaussian Noise, Gaussian Blur and Local Block-Wise Dis-
tortion simulate some common visual noise appearing in
low-quality images. In addition, Color Saturation Change
and Color Contrast Change represent some typical color dis-
tortions in images. As illustrated in Fig. 5, 1–4 types of the
above perturbations are randomly selected to be added or
mixed on samples. Each perturbation is randomly applied
by 1–3 intensity levels. Meanwhile, to avoid severe distri-
bution imbalance, we guarantee each perturbation type does
not co-occur for each sample. All of these combinations con-
tribute to in total 360 distinct perturbations with different

Fig. 6 Effect of different sequential order for facial manipulation.
Switching the sequential order of manipulations between a eye and
nose and b bangs and smiling results in different facial manipulations

intensity levels in Seq-DeepFake-P dataset. The variety and
comprehensiveness of perturbations facilities the diversity
and realness of Seq-DeepFake-P dataset.

5 SeqFakeFormer

5.1 Motivation

Most of current facial manipulation applications are con-
structed using algorithms ofGenerativeAdversarial Network
(GAN). However, it is a well known fact that due to imperfect
semantic disentanglement in the latent space of GAN (Shen
et al., 2020a; Lee et al., 2020b), manipulating one facial com-
ponent or attribute is likely to affect the others. As shown in
the first row of Fig. 2, manipulating the nose in the step
of ‘Eye-Nose’ simultaneously results in some little mod-
ification on the eye and mouth components compared to
the former step ‘Eye’, which alters the overall spatial rela-
tion among facial components. We can thus discover some
spatial manipulation traces from the spatial relation. Fur-
thermore, as illustrated in Fig. 6, switching the sequential
order ofmanipulations (e.g., manipulation order between eye
and nose in (a) and bangs and smiling in (b) of Fig. 6) causes
different facialmanipulation results (e.g., distinct gazes in (a)
and distinct amount of bangs in (b) in Fig. 6). This indicates
once changing the sequential order of manipulations, the
above overall spatial relation of facial components altered by
manipulations will also be changed. This means there exists
sequential information from spatial relation that reflects the
sequential order of manipulations, which corresponds to the
facial manipulation sequence. That is, we can extract the spa-
tial relation among facial components to unveil the spatial
manipulation traces and model their sequential relation to
detect the facial manipulation sequence. We thus regard the
sequential relation as sequential manipulation traces.

5.2 Overview

Based on the above observation, we cast detecting Seq-
DeepFakemanipulation as a specific image-to-sequence task,
where inputs are manipulated/original images and outputs
are facial manipulation sequences. Three challenges will be
encountered when addressing this task: (1) From Figs. 2, 3
and 4, it can be seen that distinguishing original faces and
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Fig. 7 Overview of proposed Seq-DeepFake Transformer (SeqFake-
Former). We first feed the face image into a CNN to learn features of
spatial manipulation regions, and extract their spatial relation via self-
attention modules in Image Encoder. Then we model the sequential

relation of spatial relation features to detect the manipulation sequences
via Sequence Decoder. A spatial enhanced cross-attention module is
integrated into the decoder, contributing to a more effective cross-
attention

sequentialmanipulated faces is extremely hard.Besides,with
respect to different people, differences in face contour cause
diverse manipulation regions for the same type of facial
components/attributes manipulation. Thus, given indistin-
guishable and diverse facialmanipulations, how to adaptively
capture subtle manipulation regions and model their spatial
relation accurately is quite challenging; (2) Based on the
spatial relation of manipulated components/attributes, how
to precisely model their sequential relation so as to detect
the sequential facial manipulation is another challenge; (3)
Compared to normal image-to-sequence task (e.g. image cap-
tions), the annotations of manipulation sequences are much
shorter and thus less informative in our task. Therefore,
how to effectively learn the sequential information of facial
manipulations given limited manipulation sequences should
also be considered.

To cope with the above three challenges, as shown in
Fig. 7, we propose a Seq-DeepFake Transformer
(SeqFakeFormer), which is composed of two key parts:
Spatial Relation Extraction via Image Encoder, Sequen-
tial Relation Modeling with Spatially Enhanced Cross-
Attention via Sequence Decoder. To capture spatial manip-
ulation traces, features of subtlemanipulation regions are first
adaptively captured by a CNN and their spatial relation are
extracted via self-attention modules in Image Encoder. After
that, to capture sequential manipulation traces, we model the
sequential relation of spatial relation features through cross-
attention layers in Sequence Decoder with an auto-regressive
mechanism. To achieve more effective cross-attention given
limited annotations of manipulation sequences, a spatially
enhanced cross-attention module is devised to generate the
adaptive spatial weight map for each corresponding manipu-

lation in the sequence. In following subsections, we describe
all components in detail.

5.3 Spatial Relation Extraction

To adaptively capture subtle and various facial manipula-
tion regions, we exploit a CNN to learn feature maps of
the input image. Given an input image x ∈ R3×H ′×W ′

from
Seq-DeepFake dataset U , we first feed it into a CNN (He et
al., 2016) to extract its visual feature maps f ori = CNN(x),
f ori ∈ RC×H×W , where H ′,W ′, and H ,W are the height
and width of the input image and its corresponding feature
maps, respectively. C is the number of channels of feature
maps.

Since the transformer architecture is permutation-invariant,
we supplement original visual features maps f ori with fixed
positional encodings (Parmar et al., 2018; Bello et al., 2019),
resulting in feature maps denoted as f pos . Given that a
sequence is accepted as input for transformer-based Image
Encoder, we reshape the spatial dimensions of f pos to one
dimension, generating reshaped features f pos ∈ RC×HW .
After fed into Image Encoder, f pos conducts self-attention
by generating the key, query, and value features K , Q, V so
as to extract the relation among all spatial positions. Through
this self-attention operation on CNN features, spatial rela-
tion of manipulation regions are exploited and thus spatial
manipulation traces can be extracted. To further facilitate
spatial relation extraction, this paper adopts multi-head self-
attention which splits features f pos into multiple groups
along the channel dimension. The multi-head normalized
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attention based on dot-product is as follows:

f spai = Softmax(KT
i Qi/

√
d)Vi , f spa

= Concat( f spa1 , ..., f spaD )
(1)

where Ki , Qi , Vi denote the i-th group of the key, query, and
value features, d is dimension of queries and keys, and total
D groups are generated. We then concatenate all the groups
to form the features of spatial relation f spa as the output of
encoder.

5.4 Sequential RelationModeling with Spatially
Enhanced Cross-Attention

Given features of spatial relation f spa extracted from the
encoder, we propose to model the sequential relation among
them to detect the facial manipulation sequences. To this
end, we carry out cross-attention between features of spatial
relation f spa and corresponding annotations ofmanipulation
sequences in an auto-regressive manner. To achieve this, we
send manipulation sequences Sori ∈ RC×N (e.g., N = 5 in
Fig. 7 before a Tokenizer) into a Tokenizer, where we trans-
form each manipulation in the sequence into one token and
insert Start of Sentence [SOS] and End of Sentence [EOS]
tokens into the beginning and end of sequence. After that, we
obtain tokenized manipulation sequences Stok ∈ RC×(N+2)

to be cross-attended with features of spatial relation f spa .
Base on the auto-regressive mechanism, the decoding pro-
cess of manipulation sequence in Sequence Decoder (aided
by cross-attention) is triggered by [SOS] token and will be
automatically stopped once [EOS] token is predicted. In
this way, we can predict facial manipulation sequences with
adaptive lengths.

Normally, cross-attention between tokenized sequences
Stok and features of spatial relation f spa should be per-
formed directly. However, as mentioned above, compared
to the normal image-to-sequence task, annotations of manip-
ulation sequences are much shorter and thus less informative
(Stok only has (N + 2)-length and maximum of N is
5). To effectively cross-attend features of spatial relation
with limited manipulation sequences, inspired by Gao et
al. (2021), we propose a sequential relation modeling with
Spatially Enhanced Cross-Attention (SECA). We argue that
each manipulation in Stok corresponds to one specific facial
component/attribute which has a strong prior of spatial
regions, thus we can enrich the information of manipula-
tion sequences guided by this prior. To this end, we generate
the spatial weight map for eachmanipulation by dynamically
predicting the spatial center and scale of each manipulation
component/attribute in sequences by:

th, tw = sigmoid(MLP(Stok)), rh, rw = FC(Stok) (2)

where th, tw and rh, rw are estimated 2-dimensional coor-
dinates corresponding to spatial centers and scales of spe-
cific manipulations in the sequences, respectively. Then the
Gaussian-shape spatial weight map can be generated as:

M(h, w) = exp

(
− (h − th)2

λr2h
− (w − tw)2

λr2w

)
(3)

where (h, w) ∈ [0, H ] × [0,W ] are 2-dimensional coordi-
nates of the spatial weightmapM , and λ is a hyper-parameter
to modulate the bandwidth of the Gaussian-shape distribu-
tion. FromEq. 3, it can be seen that spatial weightmapM can
assign higher importance to spatial regions closer to the cen-
ters and lower weights to locations farther from the centers.
Moreover, as analyzed before, since diverse manipulation
regions are presented for different people, the above dynam-
ically learned scales can further tune the height/width ratios
of spatial weight map based on eachmanipulation, contribut-
ing to amore adaptive spatial weightmap. Based on this idea,
we can enhance cross-attention between features of spatial
relation and manipulation sequences with generated spatial
weight map M as follows:

S = FC(Stok), K , V = FC( f spa),

f seqi = Softmax(KT
i Qi/

√
d + logM)Vi ,

f seq = Concat( f seq1 , ..., f seqD )

(4)

where FC denotes a single fully-connected layer, and f seqi
denotes features of sequential relation. The cross-attention
of the i-th head is further element-wise added with log-
arithm of spatial weight map M , which contributes to
spatially enhanced cross-attention. Furthermore, tomodel the
sequential relation of facialmanipulation, the auto-regressive
mechanism is integrated into the above cross-attention pro-
cess. This is implemented by masking out (setting to −∞)
all values in the input of the Softmax function in Eq. 4 which
correspond to illegal connections. Through concatenation of
features of sequential relation from all cross-attention heads,
we can obtain the final features of sequential relation f seq

as the output of decoder.
The features of sequential relation are then fed into a Fast

Forward Network (FFN) to be predicted as a class score for
each manipulation. Finally, we jointly train the CNN, Image
Encoder andSequenceDecoder byminimizing cross-entropy
loss between each class score and corresponding annotation
in the manipulation sequence as follows,

Ldec = E(x,Sseq )∼UH(FFN( f seq), Sseq) (5)

where H(·) is the cross-entropy function.
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Fig. 8 Overview of proposed Seq-DeepFake Transformer with Image-
Sequence Reasoning (SeqFakeFormer++). We further integrate two
more Image-SequenceReasoningmodules, i.e., Sequence Encoderwith
Image-Sequence Contrastive Learning, and Image-attended Sequence

Encoder with Image-Sequence Matching into our model. This con-
tributes to deeper reasoning of image-sequence relation and thus more
robust detection of Seq-DeepFake under various perturbations

5.5 Multi-headVersion of SECA

Similar to Gao et al. (2021), we extend the basic version
of Spatially Enhanced Cross-Attention (SECA) into multi-
heads version, enhancing cross-attention features adaptively
for different cross-attention heads. As formulated in Eq. 2,
the basic version of SECA estimates 2-dimensional coor-
dinates corresponding to spatial centers [th, tw]. Similarly,
the multi-head version of SECA estimates a head-shard spa-
tial center [th, tw] and then predicts a head-specific center
offset [�th,i ,�tw,i ] and corresponding head-specific scales
[rh,i , rw,i ] for i-th cross-attention head. In thisway,wegener-
ate i-th head-specific Gaussian-shape spatial weight map Mi

based on the i-th head-specific center [th +�th,i , tw +�tw,i ]
and scales [rh,i , rw,i ] as:

Mi (h, w) = exp

(
− (h − (th + �th,i ))

2

λr2h,i

− (w − (tw + �tw,i ))
2

λr2w,i

) (6)

Based on this, we can calculate the features of sequential
relation f seqi from i-th cross-attention head enhanced by the
i-th SECA as follows:

f seqi = Softmax(KT
i Qi/

√
d + logMi )Vi , (7)

Different from basic version of SECA, Eq. 7 shows that in
the multi-head version of SECA, the cross-attention of the
i-th head is element-wise added with logarithm of i-th head-
specific spatial weight map Mi , which contributes to a more
adaptive and specific enhanced cross-attention.

6 SeqFakeFormer++

AlthoughSeqFakeFormer canperformwell inSeq-DeepFake
dataset, its performance is prone to degenerate when facing
Seq-DeepFake data with perturbations in Seq-DeepFake-
P. This is because SeqFakeFormer is only able to exploit
the shallow relation between images and sequences merely
via cross-attention between Image Encoder and Sequence
Decoder. This shallow relation becomes less robust when
dealing with data in Seq-DeepFake-P dataset as perturba-
tions could cover or alter some manipulation traces. To more
robustly detect sequential manipulation sequences under
various post-processing perturbations, we further devise a
Seq-DeepFake Transformer with Image-Sequence Reason-
ing (SeqFakeFormer++) as illustrated in Fig. 8. It comple-
ments two more Image-Sequence Reasoning modules, i.e.,
Sequence Encoder and Image-attended Sequence Encoder,
to explore deeper image-sequence relation. This strengthens
the correspondence between image-sequence pairs and thus
improves the robustness of Seq-DeepFake detection to vari-
ous noises.
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6.1 Image-Sequence Contrastive Learning

In essence, feature distances between images and corre-
sponding manipulation sequences should closer to those
of unmatched pairs. To make our model more robust to
perturbations, this image-sequence correlation should be fur-
ther strengthened. To this end, we propose Image-Sequence
Contrastive Learning to align the uni-modal feature repre-
sentations of images and sequences. As depicted in Fig. 8,
we exploit the features of spatial relation f spa for the uni-
modal feature representations of images. Specifically, to
adaptively aggregate all the feature tokens in f spa , we pro-
poseAttentionalAggregation (AAG) to learn a global feature
representation for the whole image via an attention mecha-
nism. To be specific, AAG is performed by cross-attending
a tagg token with all the tokens in f spa :

tagg = AAG( f spa) = Attention(tagg, f spa, f spa) (8)

where Attention(Q, K , V ) = Softmax(KT Q/
√
D)V , and

tagg serves as the feature representation of images.
As for learning uni-modal feature representations of

sequences, we add one more Sequence Encoder as shown
in Fig. 8, where Bi-directional Self-Attention layers are built
without Spatial Enhanced Cross-Attention layers (SECA).
We send original annotations ofmanipulation sequences Sori

into the Tokenizer which appends a [CLS] token into the
beginning of the sequence input to summarize its informa-
tion. This generates a tokenized manipulation sequence for
Image-Sequence Contrastive Learning denoted as Stokisc . We
feed it into Sequence Encoder and obtain the correspond-
ing features of sequential relation for ISC f seqisc , where the
first feature token is tcls serving as the feature representation
of whole sequence. Based on the feature representation of
images tagg and sequences tcls , we perform ISC by pulling
features of matched image-sequence pairs close while push-
ing those of unmatched pairs apart. Following InfoNCE
loss (Oord et al., 2018), we formulate image-to-sequence
contrastive loss by:

Li2s(I , S
+, S−) = −Ep(I ,S)

[
log

exp(F(I , S+)/τ)∑K
k=1 exp(F(I , S−

k )/τ)

]

(9)

where τ is a temperature hyper-parameter, S− = {S−
1 , ..., S−

K }
is a set of negative sequence samples that are not matched to
I in the current batch (K is batch size). We use two projec-
tion heads hi and hs to map feature representations of two
modalities to a lower-dimensional (256) embedding space
for similarity calculation: F(I , S) = hi (tagg)Ths(tcls). Sim-

ilarly, sequence-to-image contrastive loss is as follows:

Ls2i (S, I+, I−) = −Ep(I ,S)

[
log

exp(F(S, I+)/τ)∑K
k=1 exp(F(S, I−

k )/τ)

]

(10)

where I− = {I−
1 , ..., I−

K } is a queue of K negative image
samples that are not matched to S. We incorporate the above
two losses and form Image-Sequence Contrastive Loss as:

Lisc = 1

2
[Li2s(I , S

+, S−) + Ls2i (S, I+, I−)] (11)

6.2 Image-SequenceMatching

To capture more fine-grained alignment between images and
sequences, we further interact image features with sequence
features to learn image-sequence multi-modal representa-
tion. In this regard, we integrate one more Image-attended
Sequence Encoder as displayed in Fig. 8, where interaction
of cross-modal information is performed by inserting SECA
layers the same as those of Sequence Decoder. To explore
the correspondence regarding global feature representation
between images and sequences, unlike auto-regressivemech-
anism performed in Causal Self-attention layers of Sequence
Decoder, Bi-directional Self-Attention layers are adopted in
Image-attended Sequence Encoder. Notably, a task-specific
[Enc] token is appended to the beginning of original
sequence, which plays the role of the information summary
of whole input sequence Stokism . After cross-modal interaction
through Image-attended Sequence Encoder, a token tenc can
be generated in the output feature f f eq

ism which corresponds
to the input [Enc] token. In this way, tenc summarizes the
information of cross-modal interaction and thus can be used
as the multi-modal representation of each image-sequence
pair. Based on it, we perform ISM by predicting binary
classes to determine whether the input image-sequence pair
is matched or unmatched. To achieve this, we feed tenc into a
Multilayer Perceptron (MLP) and calculate Image-Sequence
Matching Loss as follows,

Lism = E(I ,S)∼PH(MLP(tenc), ymat ) (12)

where ymat ∈ {0, 1} describes whether the input image-
sequence pair is matched or not. In order to find more
informative unmatched samples, inspired byLi et al. (2021a),
we deploy the hard negative mining strategy based on con-
trastive similarity calculated in Image-Sequence Contrastive
Learning. The hardest unmatched samples are selected based
on the highest contrastive similarity in a batch.
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Based on the aforementioned analysis, we formulate the
above objectives into a unified joint optimization model for
SeqFakeFormer++ as follows:

L = Lisc + Lism + Ldec (13)

Since SECA and FFN have similar functions in sequence
encoder and decoder, we thus share the parameters of these
layers when we perform the above joint optimization. In
this way, the benefit of deeper Image-Sequence Reasoning
brought by ISC and ISM directly contributes to better SECA
and FFN layers in Sequence Decoder. This consequently
facilitates the auto-regressive sequence decoding carried out
in Causal Self-attention layers in Sequence Decoder. All
these modules together contribute to a more robust and accu-
rate detection ofSeq-DeepFakemanipulation sequences even
facing perturbations.

7 Experiments

7.1 Experimental Setup

Implementation Details We choose two different CNNs,
ResNet-34 (He et al., 2016) and ResNet-50 (He et al., 2016)
pre-trained on ImageNet (Deng et al., 2009) dataset in our
paper. To be comparable in the number of parameters, we
adopt a transformer model with 2 encoder and 2 decoder
layers with 4 attention heads. For the training schedule, we
employ 20 epochs warm-up strategy and train for 170 epochs
with a learning rate drop to 10% in every 50 epochs. The
initial learning rates are set as 1e − 3 for transformer part
and 1e − 4 for CNN part. We set λ = 4.

Implementation is in PyTorch. For the training schedule,
we employ a 20-epochs warm-up strategy. The initial learn-
ing rate is set as 1e − 3 for transformer part and 1e − 4 for
CNN part, with a decay factor of 10 at 70 and 120 epochs,
totally 170 epochs. We use the SGD momentum optimizer
with weight decay set as 1e− 4. We use a mini-batch size of
32 per GPU and 4 GPUs in total. Model selection for evalu-
ation is conducted by considering the trained model that has
produced the best accuracy on the validation set.
Baseline Methods The most straightforward solution for
detecting Seq-DeepFake manipulation is to regard it as a
multi-label classification problem (Wang et al., 2021). It
treats all manipulations in the sequences as independent
classes and classifies the manipulated images into multiple
manipulation classes. Specifically, we design a simple multi-
label classification network (denoted as Multi-Cls) as one
of the baselines. We use ResNet-34 (He et al., 2016) and
ResNet-50 (He et al., 2016) pre-trained on ImageNet (Deng
et al., 2009) dataset as backbones for the multi-label clas-

Fig. 9 Comparison between two evaluation metrics a fixed accuracy
and b adaptive accuracy

sification network, which is concatenated with N single
linear-layer branches as N classification heads (N = 5
as maximum manipulation steps are 5 in Seq-DeepFake
dataset). Moreover, we study a more complex transformer
structure modified for our problem. DETR (Carion et al.,
2020) is a popular transformer devised for end-to-end object
detection. This model detects input images’ bounding boxes
and corresponding object classes conditioned on object
queries. We revise this model by replacing the object queries
with annotations of manipulation sequences and only pre-
serve the output of object classes.

Furthermore, to examine the performance of existing
deepfake detection methods for our research problem, we
adapt three state-of-the-art deepfake detection methods, a
DilatedResidualNetwork variant (DRN) (Wang et al., 2019),
a two-stream network modeling the correlation between
high-frequency features and regular RGB features (TS) (Luo
et al., 2021), and a multi-attentional deepfake detection
(MA) (Zhao et al., 2021a), into multi-label classification
setting. To be specific, we replace their binary label clas-
sifier with multiple classification heads to classify sequential
manipulations. Please note since all of the above baselines
are only able to predict the facial manipulation with fixed
length (N = 5), ‘no manipulation’ class will be padded into
the annotation sequence if its length is shorter than N so
that we can keep the same length between predictions and
annotation sequences for training.
Evaluation Metrics We propose two evaluation metrics for
this new task.

– Fixed Accuracy (Fixed-Acc) Since all the baseline
methods are only able to predict the facial manipu-
lation with fixed length (N = 5), ‘no manipulation’
class will be padded into the annotation sequence if its
length is shorter than N so that we can keep the same
length between predictions and annotation sequences for
training. Following this strategy, as shown in Fig. 9,
under the evaluation metric of Fixed Accuracy, given the
model prediction, such as ‘Eyebrow-Hair’, we first pad
‘no manipulation’ class into it to form the padded pre-
diction sequence as ‘Eyebrow-Hair-NM-NM-NM’ (NM
means ‘no manipulation’ class), generating the predic-
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Table 1 Accuracy of detecting
Seq-DeepFake based on
sequential facial components
manipulation

Methods ResNet-34 ResNet-50

Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

Multi-Cls 69.66 50.54 69.65 50.57

DETR (Carion et al., 2020) 69.87 50.63 69.75 49.84

Ours 72.13 54.80 72.65 55.30

Ours++ 72.66 55.16 72.81 56.12

The bold value denotes the best results

Table 2 Accuracy of detecting
Seq-DeepFake based on
sequential facial attributes
manipulation

Methods ResNet-34 ResNet-50

Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

Multi-Cls 66.99 46.68 66.66 46.00

DETR (Carion et al., 2020) 67.93 48.15 67.62 47.99

Ours 67.99 48.32 68.86 49.63

Ours++ 68.74 49.51 69.03 49.92

The bold value denotes the best results

Table 3 Accuracy of detecting
Seq-DeepFake compared to
deepfake detection methods

Methods Face Components Manipulation Face Attributes Manipulation

Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

DRN (Wang et al., 2019) 66.06 45.79 64.42 43.20

MA (Zhao et al., 2021a) 71.31 52.94 67.58 47.48

TS (Luo et al., 2021) 71.92 53.89 66.77 46.38

Ours 72.65 55.30 68.86 49.63

Ours++ 72.81 56.12 69.03 49.92

The bold value denotes the best results

tion with fixed N -length (N = 5). To keep the same
length between predictions and annotation sequences for
evaluation, we pad ‘nomanipulation’ class into the anno-
tation of manipulation sequences as well, denoted as
‘Eyebrow-Hair-Lip-NM-NM’. Given this, we compare
each manipulation class in the predicted sequences with
its corresponding annotation to calculate the evaluation
accuracy.

– Adaptive Accuracy (Adaptive-Acc/Adap-Acc):More-
over, since the proposed method detects facial manipula-
tion sequences in auto-regressive mechanism, detection
will be automatically stopped once predicting the[EOS]
token. As such, the proposed method can detect facial
manipulation sequences with adaptive lengths. To con-
duct the evaluation in this scenario, as illustrated in Fig. 9,
the second type of evaluation is devised, which compares
predicted manipulations and corresponding annotations
within the maximum steps of manipulations (N = 3
in Fig. 9 and we just pad one ‘no manipulation’ class
into prediction sequence) between them. This makes the
evaluation more concentrated on the accuracy of manip-
ulations.

7.2 Benchmark for Seq-DeepFake

We tabulate the first benchmark for detecting sequential
facial manipulation based on facial components manipula-
tion and facial attributes manipulation in Tables 1, 2 and 3.
We note that, both baselines and the proposed method yield
much higher performance under evaluationmetric Fixed-Acc
than Adaptive-Acc. This validates that detecting sequential
facialmanipulationwith adaptive lengths ismuch harder than
its simplified version with fixed length. It can be observed
from Tables 1 and 2, that the proposed SeqFakeFormer
obtains the best performance of detecting facial manipu-
lation sequences compared to all considered baselines in
both facial components manipulation and facial attributes
manipulation. In addition, SeqFakeFormer also performs bet-
ter than other baselines with both CNNs (ResNet-34 and
ResNet-50), indicating the compatibility of the proposed
method with different feature extractors. Specifically, the
proposed method has achieved about 3–4% improvement
in facial components sequential manipulation and 1–2%
improvement in facial attributes sequential manipulation
under two evaluation metrics. In particular, there exists a
larger performance gap between SeqFakeFormer and other
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baselines under evaluation metric Adaptive-Acc than Fixed-
Acc, suggestingSeqFakeFormer ismore effective in themore
challenging case.

In addition, we tabulate the comparison between three
SOTAdeepfakedetectionmethods andourmethod inTable 3.
SeqFakeFormer also outperforms all SOTA deepfake detec-
tion methods in both manipulation types. Since all the
baselines treat detecting Seq-DeepFake as a multi-label clas-
sification problem, only spatial information of manipulated
images are extracted. In contrast, SeqFakeFormer is capa-
ble of exploiting both spatial and sequential manipulation
traces and thus more useful sequential information can be
modeled, which is the key to enhance the performance of
Seq-DeepFake Detection.

Furthermore, it can be seen from Tables 1, 2 and 3 that
the upgradedSeqFakeFormer++ (Ours++) also exceeds other
baselines and further improves the performance of Seq-
FakeFormer under all settings. This demonstrates the effec-
tiveness of Seq-FakeFormer++ on original Seq-DeepFake
dataset without perturbations.

7.3 Ablation Study

In this sub-section we investigate the impact of two key
components in SeqFakeFormer, auto-regressive mechanism
and Spatially Enhanced Cross-Attention module (SECA), to
the overall performance. The considered components and the
corresponding results obtained for each case are tabulated
Tables 4 and 5. As evident from Tables 4 and 5, remov-
ing either auto-regressive mechanism or SECA will degrade
the overall performance. This validates that auto-regressive
mechanism facilitates the sequential relation modeling and
SECA benefits the cross-attention. These components com-
plement each other to produce better performance for detect-
ing Seq-DeepFake.

7.4 Accuracy for EachManipulation Sequence

As mentioned in Sect. 3, we generate 28 types of manip-
ulation sequences based on facial components manipulation
while 26 types of manipulation sequences based on facial
attributes manipulation. To provide a more detailed analy-
sis, in this section, we plot accuracy for each manipulation
sequence in both facial manipulation methods as shown in
Fig. 10. It can be observed that diverse accuracy perfor-
mance are achieved for different manipulation sequences,
ranging from 46.81 to 100% under Fixed-Acc and 34.69
to 100% under Adaptive-Acc in sequential facial compo-
nents manipulation, while ranging from 29.25 to 95.75%
under Fixed-Acc and 29.21 to 78.88% under Adaptive-Acc
in sequential facial attributes manipulation. This indicates a
large portion of manipulation sequences are difficult to be
detected and there exist some extremely hard cases. There-

Fig. 10 Accuracy for each manipulation sequence. Detection of a large
portion of manipulation sequences is challenging and some extremely
hard cases exist

Fig. 11 Examples of failure cases. Successful Seq-DeepFake detection
is non-trivial as it demands the correct prediction in terms of manipula-
tion types, orders and lengths simultaneously from hyper-realistic face
images with subtle manipulation traces

fore, we should further improve our method to cope with
all types of manipulation sequences in the future. Further-
more, it can be seen from Fig. 10 that the accuracy gap
between two evaluation metrics, Fixed-Acc and Adaptive-
Acc, decreases along with the length of sequence increases.
This is because the padded ‘no manipulation’ class is fewer
in the longer manipulation sequence when evaluating under
Adaptive-Acc, which is closer to the evaluation under Fixed-
Acc.

7.5 Visualization of AttentionMaps

To demonstrate SeqFakeFormer++ detects the manipulation
operations based on their sequence semantics, following
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Table 4 Ablation study of
detecting Seq-DeepFake based
on sequential facial components
manipulation

Components ResNet-34 ResNet-50

Auto-reg SECA Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

✗ ✗ 70.64 52.19 71.22 53.43

✗ ✓ 70.77 51.71 70.99 52.66

✓ ✗ 71.88 53.84 72.18 54.64

✓ ✓ 72.13 54.80 72.65 55.30

The bold value denotes the best results

Table 5 Ablation study of
detecting Seq-DeepFake based
on sequential facial attributes
manipulation

Components ResNet-34 ResNet-50

Auto-reg SECA Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

✗ ✗ 66.98 45.87 68.14 48.49

✗ ✓ 67.36 47.22 68.77 49.54

✓ ✗ 66.70 46.56 68.17 48.81

✓ ✓ 67.99 48.32 68.86 49.63

The bold value denotes the best results

Fig. 12 Grad-CAM visualizations on the cross-attention maps corresponding to manipulation operations

ALBEF (Li et al., 2021a), we compute and visualize Grad-
CAM (Selvaraju et al., 2017) on the cross-attention maps in
the first layer of Sequence Decoder for each manipulation
operation in the sequence. We show some samples in Fig. 12
as follows. As displayed in this figure, SeqFakeFormer++ is
able to detectmanipulation operations by attending to seman-
tically relevant facial regions, such as lip, nose, and eyebrow.
In contrast, DETR randomly pays attention to some seman-
tically irrelevant facial regions during the detection process.
This indicates that SeqFakeFormer++ is more able to cap-

ture sequence semantics when detecting each manipulation
operation, suggesting the feasibility of this application.

7.6 Face Recovery

After detecting facial manipulation sequences, we are able
to perform more challenging tasks, like recovering the orig-
inal face from the manipulated face image. Specifically, we
formulate the Face Recovery task as: given a sequentially
manipulated face image, reverse the manipulation process

Fig. 13 Face recovery based on correct and wrong facial manipulation sequences
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Fig. 14 Identity preservation

to get an image as close as possible to the original image.
For example, in the facial attributes manipulation case, given
an image generated by sequential manipulations on different
attributes on the original face, wewant to recover the original
image. In fact, this task can be seen as an inverse sequential
facial attribute manipulation problem, which can be effec-
tively solved by the data generation pipeline described in
Sect. 3 in an inverse manner. Specifically, as can be observed
in Fig. 13, once we detect the correct facial manipulation
sequence, i.e., correct manipulations ordered with correct
manipulation steps, we can recover the original face by per-
forming face attribute manipulation based on the inverse
order of the detected sequence (process with green arrow).
Comparatively, recovering the face image with wrongly
ordered manipulation sequences may encounter different
problems, such as incomplete recovery of age, smile, glasses,
and etc. (process with red arrow). Figure 14 evaluates the
results using identity preservation metrics as in Jiang et
al. (2021), where smaller feature distance means identity is
better preserved. The average feature distance between ran-
domly selected 100 original faces and recovered faces using
correct manipulation sequences is clearly smaller than that of
the wrongly ordered sequence, implying the identity can be
better recovered with correct manipulation sequence. Based
on the above analysis and experiments, we prove that the
detection of facial manipulation sequences is highly useful
for face recovery, and we hope it can be applied to more
meaningful tasks in the future.

7.7 Failure Cases

To provide a deeper understanding for our novel task and
method, we display some failure cases produced by the pro-
posed method as illustrated in Fig. 11. From Fig. 11, it
can be seen that there exist diverse failure cases, includ-
ing wrong predictions with respect to manipulation type,
sequence order, sequence length, and etc. This validates that

it is quite challenging for our novel research problem as we
need to detect facial manipulation sequences in terms of cor-
rect manipulation types, orders and lengths simultaneously
from hyper-realistic face images with subtle manipulation
traces. This motivates us to continually develop detection
methods to tackle such a novel yet challenging research prob-
lem.

8 Benchmark for Seq-DeepFake-P

We tabulate the benchmark for detecting sequential facial
manipulation with perturbations (Seq-DeepFake-P) based
on facial components manipulation and facial attributes
manipulation in Tables 6, 7 and 8. Compared to benchmark
results regarding Seq-DeepFake dataset in Tables 1, 2 and 3,
Tables 6, 7 and 8 show that the performance obtained by all
the baselines and proposed method degrades when dealing
with Seq-DeepFake-P, especially in the detection of sequen-
tial facial components manipulation. This demonstrates it is
much more challenging to detect Seq-DeepFake in the more
realistic scenario under various perturbations.

Facing such a harder scenario, it can be seen fromTables 6
and 7 that the proposed SeqFakeFormer++ (Ours++) obtains
the best detection performance for both facial components
manipulation and facial attributes manipulation. It surpasses
all considered baselines by 1–4% under two evaluation
metrics. Particularly, we can clearly observe that SeqFake-
Former++ substantially outperforms SeqFakeFormer (Ours)
in Tables 6 and 7. This implies the efficacy of two sup-
plemented image-sequence reasoning modules for tackling
Seq-DeepFake-P data. In addition, we further incorporate
one more image feature extraction backbone, ResNet-18,
into the proposed framework, as shown in Tables 6 and 7.
It can be seen that SeqFakeFormer and SeqFakeFormer++
with ResNet-18 (He et al., 2016) backbone also yield better
performance compared to other baselines, presenting simi-
lar trends as the other backbones. This further indicates the
versatility of the proposed method that SeqFakeFormer and
SeqFakeFormer++ are compatible with various image fea-
ture extraction backbones.

Meanwhile, we tabulate the comparison with three SOTA
deepfake detection methods, including our conference ver-
sion, in Table 8. SeqFakeFormer++ also exceeds all SOTA
deepfake detection methods in both sequential manipula-
tion detection tasks. Notably, SeqFakeFormer++ is able to
improve the performance with respect to Adaptive-Acc by at
least 3% compared to these three SOTA deepfake detection
methods.

To further validate the superiority of the proposed method
over some relevant multimodal learning methods, we fine-
tune representative multimodal models such as BLIP (Li et
al., 2022) and ALBEF (Li et al., 2021a) with Seq-DeepFake-
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Table 6 Accuracy of detecting Seq-DeepFake-P based on sequential facial components manipulation with perturbations

Methods ResNet-18 ResNet-34 RestNet-50

Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

Multi-Cls 60.90 40.44 63.45 40.90 64.58 42.21

DETR (Carion et al., 2020) 60.86 38.81 63.13 40.78 61.17 38.19

Ours (Shao et al., 2022) 60.97 40.90 63.51 42.01 65.19 44.34

Ours++ 63.28 42.56 65.23 44.45 66.11 45.35

The bold value denotes the best results

Table 7 Accuracy of detecting Seq-DeepFake-P based on sequential facial attributes manipulation with perturbations

Methods ResNet-18 ResNet-34 RestNet-50

Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

Multi-Cls 62.95 41.16 64.60 43.14 64.77 43.47

DETR (Carion et al., 2020) 63.08 40.69 65.65 44.93 65.62 45.23

Ours (Shao et al., 2022) 63.12 43.56 65.57 44.86 65.62 45.43

Ours++ 65.60 45.11 66.56 46.42 66.64 47.30

The bold value denotes the best results

Table 8 Accuracy of detecting
Seq-DeepFake-P compared to
deepfake detection methods

Methods Face components manipulation Face attributes manipulation

Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

DRN (Wang et al., 2019) 56.23 30.07 61.23 38.33

MA (Zhao et al., 2021a) 65.41 43.88 65.59 44.66

TS (Luo et al., 2021) 64.76 42.89 65.56 44.72

Ours (Shao et al., 2022) 65.19 44.34 65.62 45.43

Ours++ 66.11 45.35 66.64 47.30

The bold value denotes the best results

P data and tabulate their comparison results in Table 9. The
experimental results demonstrate that SeqFakeFormer and
SeqFakeFormer++ surpass both multimodal baselines by a
large margin for the task of Seq-DeepFake, suggesting the
efficacy of the proposed method.

8.1 Ablation Study

In this sub-section we study the impact of two proposed
image-sequence reasoning modules in SeqFakeFormer++,
Image-Sequence Contrastive Learning (ISC) and Image-
Sequence Matching (ISM), to the overall performance.

We tabulate ablation studies in terms of ISM and ISC in
Tables 10 and 11. As observed from Tables 10 and 11, the
performance regarding two Seq-DeepFake detection tasks
under all evaluation metrics degenerates once removing
one of these reasoning modules, indicating the effective-
ness and complementarity of them. It should be noted from
Tables 10 and 11 that adding one of the reasoning modules
in SeqFakeFormer++ will obtain better performance than
SeqFakeFormer. This further verifies the importance of each
reasoning module for detecting Seq-DeepFake under pertur-
bations.

Table 9 Accuracy of detecting
Seq-DeepFake-P compared to
multimodal learning methods

Methods Face components manipulation Face attributes manipulation

Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

BLIP (Li et al., 2022) 55.19 37.50 57.78 39.97

ALBEF (Li et al., 2021a) 60.78 38.15 60.23 42.02

Ours (Shao et al., 2022) 65.19 44.34 65.62 45.43

Ours++ 66.11 45.35 66.64 47.30

The bold value denotes the best results
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Table 10 Ablation study of SeqFakeFormer++ in detecting Seq-
DeepFake-P based on sequential facial components manipulation

Components ResNet-34 ResNet-50

ISM ISC Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

✗ ✗ 63.51 42.01 65.19 44.34

✗ ✓ 63.72 42.13 65.22 44.50

✓ ✗ 63.66 42.27 65.34 44.52

✓ ✓ 65.23 44.45 66.11 45.35

The bold value denotes the best results

Table 11 Ablation study of SeqFakeFormer++ in detecting Seq-
DeepFake-P based on sequential facial attributes manipulation

Components ResNet-34 ResNet-50

ISM ISC Fixed-Acc Adap-Acc Fixed-Acc Adap-Acc

✗ ✗ 65.57 44.86 65.62 45.43

✗ ✓ 66.17 46.36 65.87 46.21

✓ ✗ 66.47 46.31 66.48 46.24

✓ ✓ 66.56 46.42 66.64 47.30

The bold value denotes the best results

9 Conclusion

This paper studies a novel research problem—Detecting
Sequential DeepFake Manipulation, aiming to detect a
sequential vector of multi-step facial manipulation opera-
tions. We also introduce the first Seq-DeepFake dataset to
provide sequentially manipulated face images. Supported by
this new dataset, we cast detecting Seq-DeepFake manipula-
tion as a specific image-to-sequence task and propose a Seq-
DeepFake Transformer (SeqFakeFormer). Two modules,
Spatial Relation Extraction and Sequential Relation Model-
ing with Spatially Enhanced Cross-Attention, are integrated
into SeqFakeFormer, complementing each other. We fur-
ther construct a more challenging Seq-DeepFake-P dataset
to mimic the more realistic deepfake data distributions under
perturbations. A dedicated Seq-DeepFake Transformer with
Image-Sequence Reasoning (SeqFakeFormer++) is built to
deal with such a noisy scenario. Extensive experimental
results demonstrate the superiority of SeqFakeFormer and
SeqFakeFormer++ and valuable observations pave the way
for future research in broader deepfake detection.
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